Citation: | WANG Leyang, SUN Jianqiang. Variance Components Estimation for Total Least-Squares Regression Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 280-288. DOI: 10.13203/j.whugis20180450 |
[1] |
Adcok R. A Problem in Least Squares[J]. Analyst, 1878, 5: 53-54 doi: 10.2307/2635758
|
[2] |
Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space[J]. Philosophical Magazine and Journal of Science, 2010, 2(11): 559-572
|
[3] |
York D. Least-Squares Fitting of a Straight Line[J]. Canadian Journal of Physics, 1996, 44(5): 1 079-1 086
|
[4] |
Golub G H, van Loan C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893 doi: 10.1137/0717073
|
[5] |
Fang Xing, Wang Jin, Li Bofeng, et al. On Total Least Squares for Quadratic Form Estimation[J]. Studia Geophysica et Geodaetica, 2015, 59(3): 366-379 doi: 10.1007/s11200-014-0267-x
|
[6] |
Shen Yunzhong, Li Bofeng, Chen Yi. An Iterative Solution of Weight Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4): 229-238 doi: 10.1007/s00190-010-0431-1
|
[7] |
Fang Xing. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Germany: Leibniz Universität Hannover, 2011
|
[8] |
Fang Xing. Weight Total Least-Squares with Constraints: A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5): 459-469 doi: 10.1007/s00190-015-0790-8
|
[9] |
Jazaeri S, Amiri-Simkooei A R, Sharfi M A. Iterative Algorithm for Weight Total Least Squares Adjustment[J]. Survey Review, 2014, 46(334): 19-27 doi: 10.1179/1752270613Y.0000000052
|
[10] |
Amiri-Simkooei A R, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Jouranal of Geodetic Science, 2012, 2(2): 113-124 doi: 10.2478/v10156-011-0036-5
|
[11] |
汪奇生, 杨德宏, 杨建文.基于总体最小二乘的线性回归迭代算法[J].大地测量与地球动力学, 2013, 33(6): 112-114, 120 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201306026.htm
Wang Qisheng, Yang Dehong, Yang Jianwen. An Iterative Algorithm of Linear Regression Based on Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2013, 33(6): 112-114, 120 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201306026.htm
|
[12] |
孔建, 姚宜斌, 吴寒.整体最小二乘的迭代解法[J].武汉大学学报∙信息科学版, 2010, 35(6): 711-714 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm
Kong Jian, Yao Yibin, Wu Han. Iterative Method for Total Least-Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):711-714 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm
|
[13] |
Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
|
[14] |
王乐洋, 赵英文, 陈晓勇, 等.多元总体最小二乘问题的牛顿解法[J].测绘学报, 2016, 45(4): 411-417 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201604006.htm
Wang Leyang, Zhao Yingwen, Chen Xiaoyong, et al. A Newton Algorithm for Multivariate Total Least Squares Problems[J].Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 411-417 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201604006.htm
|
[15] |
许光煜. Partial EIV模型的总体最小二乘方法及应用研究[D].南昌: 东华理工大学, 2016
Xu Guangyu. The Total Least Squares Method and Its Application of Partial Errors-in-Variables Model[D]. Nanchang: East China University of Technology, 2016
|
[16] |
陶武勇, 鲁铁定, 许光煜, 等.稳健总体最小二乘Helmert方差分量估计[J].大地测量与地球动力学, 2017, 37(11): 1 193-1 197 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201711019.htm
Tao Wuyong, Lu Tieding, Xu Guangyu, et al. Helmert Variance Component Estimation for Robust Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2017, 37(11): 1 193-1 197 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201711019.htm
|
[17] |
王乐洋, 许光煜.加权总体最小二乘平差随机模型的验后估计[J].武汉大学学报∙信息科学版, 2016, 41(2): 255-261 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201602018.htm
Wang Leyang, Xu Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201602018.htm
|
[18] |
杨元喜, 张晓东.基于严密Helmert方差分量估计的动态Kalman滤波[J].同济大学学报(自然科学版), 2009, 37(9): 1 241-1 245 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200909021.htm
Yang Yuanxi, Zhang Xiaodong. Variance Component Estimation of Helmert Type-Based Dynamic Kalman Filtering[J]. Journal of Tongji University (Natural Science), 2009, 37(9): 1 241-1 245 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200909021.htm
|
[19] |
Wang Leyang, Xu Guangyu. Variance Component Estimation for Partial Errors-in-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1): 35-55 doi: 10.1007/s11200-014-0975-2
|
[20] |
乐科军.基于Helmert方差分量估计的半参数回归模型若干算法研究[D].长沙: 中南大学, 2009
Le Kejun. A Study on the Algorithms of Semiparametric Regression Model Based on Helmert Variance Component Estimation[D]. Changsha: Central South University, 2009
|
[21] |
赵俊, 郭建锋.方差分量估计的通用公式[J].武汉大学学报·信息科学版, 2013, 38(5): 580-583 http://ch.whu.edu.cn/article/id/2639
Zhao Jun, Guo Jianfeng. Auniversal Formula of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 580-583 http://ch.whu.edu.cn/article/id/2639
|
[22] |
Xu Peiliang, Liu Jingnan. Variance Components in Errors-in-Variables Models: Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88(8): 719-734 doi: 10.1007/s00190-014-0717-9
|
[23] |
Amiri-Simkooei A R. Least-Squares Variance Component Estimation: Theory and GPS Applications[D]. Delft: Delft University of Technology, 2007
|
[24] |
Teunissen P J G, Amiri-Simkooei A R. Least-Squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2): 65-82 doi: 10.1007/s00190-007-0157-x
|
[25] |
Amiri-Simkooei A R. Non-negative Least-Squares Variance Component Estimation with Application to GPS Time Series[J]. Journal of Geodesy, 2016, 90(5): 451-466 doi: 10.1007/s00190-016-0886-9
|
[26] |
王乐洋, 温贵森.相关观测PEIV模型的最小二乘方差分量估计[J].测绘地理信息, 2018, 43(1): 8-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201801002.htm
Wang Leyang, Wen Guisen. Least Squares Variance Components Estimation of PEIV Model with Correlated Observations[J]. Journal of Geomatics, 2018, 43(1): 8-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201801002.htm
|
[27] |
王乐洋, 温贵森. Partial EIV模型的非负最小二乘方差分量估计[J].测绘学报, 2017, 46(7): 857-865 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201707009.htm
Wang Leyang, Wen Guisen. Non-negative Least Squares Variance Component Estimation of Partial EIV Model[J]. Acta Geodetica et Cartographica Sinica, 2017, 46(7): 857-865 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201707009.htm
|
[28] |
陶叶青, 蔡安宁, 杨娟.方差分量估计的抗差总体最小二乘算法[J].测绘工程, 2018, 27(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201803001.htm
Tao Yeqing, Cai Anning, Yang Juan. Solution for Robust Total Least Squares Based on Variance Component Estimation[J]. Engineering of Surveying and Mapping, 2018, 27(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201803001.htm
|
[29] |
刘志平, 张书毕.方差-协方差分量估计的概括平差因子法[J].武汉大学学报∙信息科学版, 2013, 38(8): 925-929 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308011.htm
Liu Zhiping, Zhang Shubi. Variance-Covariance Component Estimation Method Based on Generalization Adjustment Factor[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 925-929 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308011.htm
|
[30] |
王乐洋, 余航.附有相对权比的加权总体最小二乘联合平差方法[J].武汉大学学报∙信息科学版, 2019, 44(8): 1 233-1 240 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201908018.htm
Wang Leyang, Yu Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1 233-1 240 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201908018.htm
|
[31] |
王苗苗, 李博峰.无缝线性回归与预测模型[J].测绘学报, 2016, 45(12): 1 396-1 405 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201612003.htm
Wang Miaomiao, Li Bofeng. Seamless Linear Regression and Prediction Model[J]. Acta Geodetica et Cartographica Sinica, 2016, 45(12): 1 396-1 405 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201612003.htm
|
[32] |
李博峰, 沈云中, 李微晓.无缝三维基准转换模型[J].中国科学:地球科学, 2012, 42(7): 1 047-1 054 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm
Li Bofeng, Shen Yunzhong, Li Weixiao. The Seamless Model for Three-Dimensional Datum Transformation[J]. Science China: Earth Sciences, 2012, 42(7): 1 047-1 054 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm
|
[33] |
李博峰.无缝仿射基准转换模型的方差分量估计[J].测绘学报, 2016, 45(1): 30-35 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601006.htm
Li Bofeng. Variance Component Estimation in the Seamless Affine Transformation Model[J]. Acta Geodetica et Cartographica Sinica, 2016, 45(1): 30-35 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601006.htm
|
[34] |
李博峰, 沈云中, 楼立志.基于等效残差的方差-协方差分量估计[J].测绘学报, 2010, 39(4): 349-354, 363 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201004006.htm
Li Bofeng, Shen Yunzhong, Lou Lizhi. Variance-Covariance Component Estimation Based on the Equivalent Residuals[J]. Acta Geodetica et Cartographica Sinica, 2010, 39(4): 349-354, 363 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201004006.htm
|
[1] | ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311 |
[2] | ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373 |
[3] | CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479. |
[4] | ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707. |
[5] | AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54. |
[6] | LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358. |
[7] | YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777. |
[8] | WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487. |
[9] | ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399. |
[10] | WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990. |