LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 784-790. DOI: 10.13203/j.whugis20180437
Citation: LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 784-790. DOI: 10.13203/j.whugis20180437

Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition

Funds: 

The National Natural Science Foundation of China 41861058

The National Natural Science Foundation of China 41664001

the Open Research Fund Program of Key Laboratory for Digital Land and Resources of Jiangxi Province DLLJ201612

More Information
  • Author Bio:

    LUO Yiyong, PhD, associate professor, specializes in deformation data processing method. E‐mail: luoyiyong@whu.edu.cn

  • Received Date: May 12, 2019
  • Published Date: May 04, 2020
  • In order to improve the denoising accuracy and reliability of deformation monitoring data, a new denoising algorithm for deformed data is constructed based on variational mode decomposition (VMD). Firstly, the criterion for judging the high frequency noise component of VMD is established, and T index is introduced to determine the optimal K value of VMD denoising. Then, VMD component after eliminating high frequency noise is reconstructed, and the denoising method of VMD deformation data is established. Finally, the denoising methods of VMD, wavelet and empirical mode decomposition (EMD) are compared and analyzed through the examples of simulation signal, bridge deformation data and dam deformation data. The experimental results show that the correlation coefficient, root mean square error and signal-to-noise ratio of VMD are better than those of wavelet and EMD. Therefore, the validity and reliability of VMD denoising method are proved theoretically. When denoising bridge deformation data and dam deformation data, VMD denoising results have better denoising accuracy and smoothness than wavelet and EMD, while retaining the local deformation feature information.
  • [1]
    Dai W, Huang D, Liu B. A Phase Space Reconstruction Based Single Channel ICA Algorithm and Its Application in Dam Deformation Analysis[J]. Empire Survey Review, 2015, 47(345):387-396 doi: 10.1179/1752270614Y.0000000139
    [2]
    Narasimhappa M, Sabat S L, Nayak J. Fiber-Optic Gyroscope Signal Denoising Using an Adaptive Robust Kalman Filter[J]. IEEE Sensors Journal, 2016, 16(10):3711-3718 doi: 10.1109/JSEN.2016.2535396
    [3]
    Zhai M Y. Seismic Data Denoising Based on the Fractional Fourier Transformation[J]. Journal of Applied Geophysics, 2014, 109:62-70 doi: 10.1016/j.jappgeo.2014.07.012
    [4]
    Yi C, Lv Y, Xiao H, et al. Multisensor Signal Denoising Based on Matching Synchrosqueezing Wavelet Transform for Mechanical Fault Condition Assessment[J].Measurement Science & Technology, 2018, doi: 10.1088/1361-6501/aaa50a
    [5]
    王德军, 熊永良, 徐韶光.利用窗口小波去噪的高精度动态单历元定位算法[J].武汉大学学报·信息科学版, 2015, 40(6):779-784, 852 http://ch.whu.edu.cn/CN/abstract/abstract3276.shtml

    Wang Dejun, Xiong Yongliang, Xu Shaoguang. A Precise Kinematic Single Epoch Positioning Algorithm Using Moving Window Wavelet Denoising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):779-784, 852 http://ch.whu.edu.cn/CN/abstract/abstract3276.shtml
    [6]
    Lau L. Wavelet Packets Based Denoising Method for Measurement Domain Repeat-Time Multipath Filtering in GPS Static High-Precision Positioning[J]. GPS Solutions, 2017, 21(2):461-474 doi: 10.1007/s10291-016-0533-1
    [7]
    Chan J C, Ma H, Saha T K, et al. Self-adaptive Partial Discharge Signal De-noising Based on Ensemble Empirical Mode Decomposition and Automatic Morphological Thresholding[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(1):294-303 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54f11d8740614ff16fa9d090c5838001
    [8]
    王笑蕾, 张勤, 张双成.基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析[J].武汉大学学报·信息科学版, 2018, 43(4):620-628 http://ch.whu.edu.cn/CN/abstract/abstract6030.shtml

    Wang Xiaolei, Zhang Qin, Zhang Shuangcheng. Periodic Oscillation Analysis of GPS Water Vapor Time Series Using Combined Algorithm Based on EMD and WD[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):620-628 http://ch.whu.edu.cn/CN/abstract/abstract6030.shtml
    [9]
    于金涛, 赵树延, 王祁.基于经验模态分解和小波变换声发射信号去噪[J].哈尔滨工业大学学报, 2011, 43(10):88-92 doi: 10.11918/j.issn.0367-6234.2011.10.019

    Yu Jintao, Zhao Shuyan, Wang Qi. Denoising of Acoustic Emission Signals Based on Empirical Mode Decomposition and Wavelet Transform[J]. Journal of Harbin Institute of Technology, 2011, 43(10):88-92 doi: 10.11918/j.issn.0367-6234.2011.10.019
    [10]
    李宗春, 邓勇, 张冠宇, 等.变形测量异常数据处理中小波变换最佳级数的确定[J].武汉大学学报·信息科学版, 2011, 36(3):285-288 http://ch.whu.edu.cn/CN/abstract/abstract496.shtml

    Li Zongchun, Deng Yong, Zhang Guanyu, et al. Deformation Measurement of Abnormal Data in the Wavelet Transform to Determine the Best Series[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):285-288 http://ch.whu.edu.cn/CN/abstract/abstract496.shtml
    [11]
    陶珂, 朱建军.多指标融合的小波去噪最佳分解尺度选择方法[J].测绘学报, 2012, 41(5):749-755 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201205021

    Tao Ke, Zhu Jianjun. A Hybrid Indicator for Determining the Best Decomposition Scale of Wavelet Denoising[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):749-755 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201205021
    [12]
    朱建军, 章浙涛, 匡翠林, 等.一种可靠的小波去噪质量评价指标[J].武汉大学学报·信息科学版, 2015, 40(5):688-694 http://d.wanfangdata.com.cn/periodical/whchkjdxxb201505022

    Zhu Jianjun, Zhang Zhetao, Kuang Cuilin, et al. A Reliable Evaluation Indicator of Wavelet Denoising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):688-694 http://d.wanfangdata.com.cn/periodical/whchkjdxxb201505022
    [13]
    罗飞雪, 戴吾蛟, 伍锡锈.基于交叉认证的EMD滤波及其在GPS多路径效应中的应用[J].武汉大学学报·信息科学版, 2012, 37(4):450-453 http://ch.whu.edu.cn/CN/abstract/abstract166.shtml

    Luo Feixue, Dai Wujiao, Wu Xixiu. EMD Filtering Based on Cross-Validation and Its Application in GPS Multipath[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4):450-453 http://ch.whu.edu.cn/CN/abstract/abstract166.shtml
    [14]
    王维强, 杨国权.基于EMD与ICA的地震信号去噪技术研究[J].石油物探, 2012, 51(1):19-29, 111 doi: 10.3969/j.issn.1000-1441.2012.01.003

    Wang Weiqiang, Yang Guoquan. Random Noise Denoising Technique Based on EMD and ICA[J]. Geophysical Prospecting for Petroleum, 2012, 51(1):19-29, 111 doi: 10.3969/j.issn.1000-1441.2012.01.003
    [15]
    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544 doi: 10.1109/TSP.2013.2288675
    [16]
    马增强, 柳晓云, 张俊甲, 等.VMD和ICA联合降噪方法在轴承故障诊断中的应用[J].振动与冲击, 2017, 36(13):201-207 http://d.old.wanfangdata.com.cn/Periodical/zdycj201713033

    Ma Zengqiang, Liu Xiaoyun, Zhang Junjia, et al. Application of VMD-ICA Combined Method in Fault Diagnosis of Rolling Bearings[J]. Journal of Vibration and Shock, 2017, 36(13):201-207 http://d.old.wanfangdata.com.cn/Periodical/zdycj201713033
    [17]
    李加福, 唐文彦, 张晓琳, 等.壳段厚度激光检测信号的变分模态分解去噪[J].光学精密工程, 2017, 25(8):2173-2181 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708025

    Li Jiafu, Tang Wenyan, Zhang Xiaolin, et al. Adaptive Denoising for Laser Detection Signal of Shell Thickness Based on Variational Mode Decomposition[J]. Optics and Precision Engineering, 2017, 25(8):2173-2181 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708025
    [18]
    张杏莉, 卢新明, 贾瑞生, 等.基于变分模态分解及能量熵的微震信号降噪方法[J].煤炭学报, 2018, 43(2):356-363

    Zhang Xingli, Lu Xinming, Jia Ruisheng, et al. Micro-seismic Signal Denoising Method Based on Variational Mode Decomposition and Energy Entropy[J]. Journal of China Coal Society, 2018, 43(2):356-363
    [19]
    Flandrin P, Rilling G, Goncalves P. Empirical Mode Decomposition as a Filter Bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114 doi: 10.1109/LSP.2003.821662
    [20]
    Zhang Q, Yang W, Zhang S, et al. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother[J]. Sensors, 2018, 18(2):198-213 doi: 10.3390/s18010198
    [21]
    Wu Z, Huang N E. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method[J]. Proceedings Mathematical Physical & Engineering Sciences, 2004, 460(2046):1597-1611 doi: 10.1098/rspa.2003.1221
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views PDF downloads Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return