基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析

王笑蕾, 张勤, 张双成

王笑蕾, 张勤, 张双成. 基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析[J]. 武汉大学学报 ( 信息科学版), 2018, 43(4): 620-628. DOI: 10.13203/j.whugis20150596
引用本文: 王笑蕾, 张勤, 张双成. 基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析[J]. 武汉大学学报 ( 信息科学版), 2018, 43(4): 620-628. DOI: 10.13203/j.whugis20150596
WANG Xiaolei, ZHANG Qin, ZHANG Shuangcheng. Periodic Oscillation Analysis of GPS Water Vapor Time Series Using Combined Algorithm Based on EMD and WD[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 620-628. DOI: 10.13203/j.whugis20150596
Citation: WANG Xiaolei, ZHANG Qin, ZHANG Shuangcheng. Periodic Oscillation Analysis of GPS Water Vapor Time Series Using Combined Algorithm Based on EMD and WD[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 620-628. DOI: 10.13203/j.whugis20150596

基于EMD和WD联合算法的GPS水汽时间序列的周期性振荡分析

基金项目: 

国家自然科学基金 41731066

中央高校基本科研业务费 310826175028

二代导航重大专项课题“分析中心建设与运行维护” GFZX0301040308

详细信息
    作者简介:

    王笑蕾, 博士, 主要从事GNSS空间环境分析。chd_wxl@qq.com

    通讯作者:

    张勤, 博士, 教授。zhangqinle@263.net.cn

  • 中图分类号: P228

Periodic Oscillation Analysis of GPS Water Vapor Time Series Using Combined Algorithm Based on EMD and WD

Funds: 

The National Natural Science Foundation of China 41731066

the Fundamental Research Funds for the Central Universities 310826175028

the Grand Projects of the Beidou-2 System GFZX0301040308

More Information
    Author Bio:

    WANG Xiaolei, PhD candidate, specializes in the GNSS Reflections. E-mail:chd_wxl@qq.com

    Corresponding author:

    ZHANG Qin, PhD, professor. E-mail: zhangqinle@263.net.cn

  • 摘要: 水汽在全球水文和气候变化上扮演着非常重要的角色。选取了中国台湾GPS水汽时间序列作为算例数据,分析了水汽与地理环境的对应关系,得到中国台湾地区的大气水汽分布主要受纬度,地形特征和气候条件控制的结论。利用经验模态分解(EMD)和小波分解(WD)联合算法将中国台湾GPS站水汽的长时间序列和短时间序列进行分解,探测出每个GPS站都存在周年、半周年、天、半天的周期振荡,再结合地理、气候因素分析周期振荡产生的物理原因,得出结论:年周期的水汽振荡主要是由于在中国台湾特殊地形条件下年季风周期变化引起的;半周年的振荡主要是由于夏季风与冬季风对中国台湾地区的交替控制所导致的;而导致水汽日变化的原因则是海陆风环流、海陆风-山谷风叠加环流;天顶可降水量(PWV)半日振荡的振幅较小,则主要是因为受到了太阳辐射加热引起的局地热对流的影响所导致。
    Abstract: Water vapor plays a key role in the global hydrologic cycle and the climate change. In order to investigate the spatial and the temporal characteristic of the Precipitable Water Vapor (PWV), the data of Global Positioning System (GPS) stations at Taiwan were chosen to analyze. The water vapor time values were calculated by Software Bernese 5.0 for 100 GPS stations from year 2006 to year 2013, and the sample interval is one hour. By analyzing the corresponding relation between the tropospheric water vapor and the geographical environment, the conclusion that the water vapor depending upon the latitude, the topography and the climatic conditions was made. Then, the long and the short time series of GPS water vapor for Taiwan were decomposed by Empirical Mode Decomposition (EMD) and Wavelet Decomposition (WD). The result shows that there were annual, semiannual, diurnal, and semidiurnal periodic oscillation graph in each water vapor series for GPS stations at Taiwan. Combining with geographical climate factors to analyze the physical reasons of these oscillation periods, conclusions could be found as follows. The annual monsoon changes impact the annual cycle of the water vapor series. The semiannual oscillation is mainly due to the alternated control of Taiwan between summer monsoon and winter monsoon. The diurnal cycle of the water vapor series is caused by the sea-land breeze circulation and the mountain-valley wind circulation. The amplitude of semidiurnal cycle in the water vapor series, which is mainly caused by local thermal convection due to the solar radiation, is small.
  • 致谢: 感谢台湾大气可降水服务网提供的水汽数据和北斗分析中心提供的平台支持。
  • 图  1   台湾GPS站平均PWV与地理位置、地形、纬度的对应情况

    Figure  1.   The Average PWV with the Interaction of Geographical Location, Topography, Latitude

    图  2   KYIN和SAND站长时间和短时间序列以及相应的EMD-IMF

    Figure  2.   The Long and Short Time Series and the Corresponding EMD-IMF of KYIN and SAND

    图  3   KYIN站和SAND站长时间序列和短时间序列小波分解结果

    Figure  3.   The Long and Short Time Series and the Corresponding the WD-IMF of KYIN and SAND

    图  4   周年、半周年、一天、半天周期振荡IMF振幅分布情况(白色点为异常高值)

    Figure  4.   Amplitude of Annual, Semiannual, Diurnal, Semidiurnal Oscillation

  • [1]

    Bevis M, Businger S, Herring T A, et al. GPS Meteorology:Romote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research Atmospheres, 1992, 97(D14):15787-15801 doi: 10.1029/92JD01517

    [2]

    Tong Ning, Elgered G, Wang Junhong, et al. Validation of GPS-Derived Long-Term Trend in the Atmospheric Water Vapor Using Homogenized Radiosonde Data[R]. Boulder: Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden, National Center for Atmospheric Research, 2012

    [3] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海: 中国科学研究院上海天文台, 2004

    Song Shuli. Sensing Three Dimensional Water Vapor Structure with Ground-Based GPS Network and the Application in Meteorology[D]. Shanghai: Shanghai Astronomical Observatory, CAS, 2004

    [4] 陈永奇, 刘焱雄, 王晓亚.香港实时GPS水汽监测系统的若干关键技术[J].测绘学报, 2007, 36(1):9-12 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200701001&dbname=CJFD&dbcode=CJFQ

    Chen Yongqi, Liu Yanxiong, Wang Xiaoya. GPS Real-Time Estimation of Precipitable Water Vapor-Hong Kong Experiences[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):9-12 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200701001&dbname=CJFD&dbcode=CJFQ

    [5] 于胜杰, 柳林涛, 梁星辉.约束条件对GPS水汽层析解算的影响分析[J].测绘学报, 2010, 39(5):491-496 http://d.wanfangdata.com.cn/Periodical_chxb201005009.aspx

    Yu Shengjie, Liu Lintao, Liang Xinghui. Influence Analysis of Constraint Conditions on GPS Water Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):491-496 http://d.wanfangdata.com.cn/Periodical_chxb201005009.aspx

    [6] 张双成. 地基GPS遥感水汽空间分布技术及其应用的研究[D]. 武汉: 武汉大学, 2009

    Zhang Shuangcheng. Research of Remotely Sensing Atmosphere Water Vapor with Ground-Based GPS on Spatial Distribution and its Application[D]. Wuhan: Wuhan University, 2009

    [7]

    Jin S G, Luo O F. Variability and Climatology of PWV from Global 13-year GPS Observations.[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(7):1918-1924 http://www.academia.edu/9197439/Variability_and_climatology_of_PWV_from_global_13-year_GPS_observations

    [8] 张双成, 刘经南, 叶世榕.顾及双差残差反演GPS信号方向的斜路径水汽含量[J].武汉大学学报·信息科学版, 2009, 34(1):100-104 http://ch.whu.edu.cn/CN/abstract/abstract1151.shtml

    Zhang Shuangcheng, Liu Jingnan, Ye Shirong. Retrieval of Water Vapor Along the GPS Slant Path Based on Double-Differenced Residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1):100-104 http://ch.whu.edu.cn/CN/abstract/abstract1151.shtml

    [9] 张瑞, 宋伟伟, 朱爽.地基GPS遥感天顶水汽含量方法研究[J].武汉大学学报·信息科学版, 2010, 35(6):691-693 http://ch.whu.edu.cn/CN/abstract/abstract953.shtml

    Zhang Rui, Song Weiwei, Zhu Shuang. Remotely Sensing Atmosphere Water Vapor with Ground-Based GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):691-693 http://ch.whu.edu.cn/CN/abstract/abstract953.shtml

    [10] 张双成, 叶世榕, 刘经南, 等.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武汉大学学报·信息科学版, 2009, 34(3):280-283 http://ch.whu.edu.cn/CN/abstract/abstract1190.shtml

    Zhang Shuangcheng, Ye Shirong, Liu Jingnan, et al. Latest Progress of Dynamic Mapping Functions and Its Application to GNSS Retrieved Water-Vapor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):280-283 http://ch.whu.edu.cn/CN/abstract/abstract1190.shtml

    [11] 刘焱雄, H B Iz, 陈永奇.地基GPS技术遥感香港地区大气水汽含量[J].武汉大学学报·信息科学版, 2009, 34(3):280-283 http://ch.whu.edu.cn/CN/abstract/abstract4409.shtml

    Liu Yanxiong, H B Iz, Chen Yongqi. Monitoring the Water Vapor Content in the Atmosphere in Hong Kong Through Ground Based GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):280-283 http://ch.whu.edu.cn/CN/abstract/abstract4409.shtml

    [12] 王勇, 柳林涛, 许厚泽, 等.利用GPS技术反演中国大陆水汽变化[J].武汉大学学报·信息科学版, 2007, 32(2):152-155 http://ch.whu.edu.cn/CN/abstract/abstract1821.shtml

    Wang Yong, Liu Lintao, Xu Houze, et al. Retrieving Change of Precipitable Water Vapor in Chinese Mainland by GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):152-155 http://ch.whu.edu.cn/CN/abstract/abstract1821.shtml

    [13] 石春香. HHT变换及其在结构分析中的应用[D]. 上海: 同济大学, 2004

    Shi Chunxiang. HHT Transform and its Application in Structural Analysis[D]. Shanghai: Tongji University, 2004

    [14] 戴吾蛟, 丁晓利, 朱建军, 等.基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J].测绘学报, 2006, 35(4):321-327 doi: 10.3321/j.issn:1001-1595.2006.04.005

    Dai Wujiao, Ding Xiaoli, Zhu Jianjun, et al. EMD Filter Method and its Application in GPS Multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):321-327 doi: 10.3321/j.issn:1001-1595.2006.04.005

    [15] 林正云.台湾海峡两岸的降水与地形的关系[J].福建师范大学学报(自然科学版), 1991, 7(2):78-83 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fjsz199102013&dbname=CJFD&dbcode=CJFQ

    Lin Zhengyun. The Relationship Between Precipitation and Terrain on Both Sides of Taiwan Strait[J]. Journal of Fujian Normal University(Natural Science Edition), 1991, 7(2):78-83 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fjsz199102013&dbname=CJFD&dbcode=CJFQ

  • 期刊类型引用(9)

    1. 陈嘉琦,陈亮,林巍. GNSS钟差估计中的两种测站选取策略分析. 地理空间信息. 2022(11): 64-69 . 百度学术
    2. 刘赞,刘晓鹏,陈西宏,谢泽东,刘强. 对流层散射无源监视系统最优布局方法. 国防科技大学学报. 2021(01): 103-108 . 百度学术
    3. 胡超,王中元,王潜心,饶鹏文. 一种改进的BDS-2/BDS-3联合精密定轨系统偏差处理模型. 武汉大学学报(信息科学版). 2021(03): 360-370 . 百度学术
    4. 张磊. 基于超精密激光辅助的运动训练图像去噪处理模型研究. 激光杂志. 2021(04): 114-120 . 百度学术
    5. 胡超,王潜心,毛亚. 一种基于DOP值的GNSS超快速观测轨道精化模型. 武汉大学学报(信息科学版). 2020(01): 28-37 . 百度学术
    6. 杨鸿毅,王潜心,毛亚,胡超,何义磊. BDS-3观测数据质量分析及精密定轨. 导航与控制. 2019(06): 55-61 . 百度学术
    7. 毛亚,王潜心,胡超,何义磊. 北斗在轨卫星广播星历精度分析. 宇航学报. 2018(09): 1013-1021 . 百度学术
    8. 何颖,马戎,权绎弘,郭强. 标志点定向系统几何精度因子的计算方法. 测控技术. 2018(12): 66-69 . 百度学术
    9. 毛亚,王潜心,于伟宣,胡超,张铭彬. 多卫星导航系统钟差解算效率分析. 金属矿山. 2017(10): 59-62 . 百度学术

    其他类型引用(11)

图(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 20
出版历程
  • 收稿日期:  2016-05-26
  • 发布日期:  2018-04-04

目录

    /

    返回文章
    返回