LI Chengming, YIN Yong, WU Pengda, WU Wei. A Partitioned Dissolution Method for Long and Narrow Patches[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2259-2268. DOI: 10.13203/j.whugis20180274
Citation: LI Chengming, YIN Yong, WU Pengda, WU Wei. A Partitioned Dissolution Method for Long and Narrow Patches[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2259-2268. DOI: 10.13203/j.whugis20180274

A Partitioned Dissolution Method for Long and Narrow Patches

Funds: 

The National Basic Surveying and Mapping Project A1705

the National Natural Science Foundation of China 41871375

More Information
  • Author Bio:

    LI Chengming, PhD, professor, specialige in digital city, smart city and map generalization automatically. E-mail:cmli@casm.ac.cn

  • Corresponding author:

    YIN Yong, PhD. E-mail:yinyong@casm.ac.cn

  • Received Date: July 14, 2018
  • Published Date: December 04, 2018
  • The dissolution operation is a common operation in patch generalization and it involves a large number of computations. Due to limitations in computational power, it is very difficult to process a large number of patches over a large area using traditional dissolution methods. To overcome this limitation, this paper proposes a partitioned dissolution method for long and narrow patches (LN patches) by introducing the block strategy and focusing on the topological changes that occur in the partition lines of LN patches at partition-cell boundaries. Firstly, the topological changes that appear around partition-cell boundaries during the dissolution of LN patches are summarized into four patterns. For each of these patterns, a corresponding method is formulated for reconciling the topological changes of the partition line. Our approach is then validated by using the national geographical conditions data of Chishui City, Guizhou Province. It is experimentally demonstrated that our method is capable of processing large-scale patch data and greatly improves the efficiency of patch dissolution opera-tions. The results of our partitioned dissolution method are also found to be strongly consistent with the unpartitioned method of dissolution. Our method is therefore viable for practical applications.
  • [1]
    艾廷华, 杨帆, 李精忠.第二次土地资源调查数据建库中的土地利用图综合缩编[J].武汉大学学报·信息科学版, 2010, 35 (8): 887-891 http://ch.whu.edu.cn/CN/abstract/abstract1024.shtml

    Ai Tinghua, Yang Fan, Li Jingzhong. Land-use Data Generalization for the Database Construction of the Second Land Resource Survey[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 887-891 http://ch.whu.edu.cn/CN/abstract/abstract1024.shtml
    [2]
    Aichholzer O, Aurenhammer F, Alberts D, et al. A Novel Type of Skeleton for Polygons[M]. Berlin, Heidelberg: Springer, 1996
    [3]
    Haunert J H, Sester M. Area Collapse and Road Centerlines Based on Straight Skeletons[J]. GeoInformatica, 2008, 12(2): 169-191 doi: 10.1007/s10707-007-0028-x
    [4]
    Lee D T. Medial Axis Transformation of a Planar Shape[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4 (4): 363-369 doi: 10.1109/TPAMI.1982.4767267
    [5]
    Cloppet F, Oliva J M, Stamon G. Angular Bisector Network, a Simplified Generalized Voronoi Diagram: Application to Processing Complex Intersections in Biomedical Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 120-128 doi: 10.1109/34.824824
    [6]
    Ruas A. Multiple Paradigms for Automating Map Generalization: Geometry, Topology, Hierarchical Partitioning and Local Triangulation[C]. ACSM/ASPRS Annual Convention and Exposition, Charlotte, USA, 1995
    [7]
    Ware J M, Jones C B, Bundy G L. A Triangulated Spatial Model for Cartographic Generalization of Areal Objects[C]// Kraak M J, Molenaar M. Advance in GIS Research Ⅱ (the 7th Int Symposium on Spatial Data Handling). London: Taylor & Francis, 1997a: 173-192
    [8]
    Delucia A A, Black R T. A Comprehensice Approach to Automatic Feature Generalization[C]. The 13th International Cartographic Conference, Morelia, Mexico, 1987
    [9]
    艾廷华, 郭仁忠.支持地图综合的面状目标约束Delaunay三角网剖分[J].武汉大学学报·信息科学版, 2000, 25(1): 35-41 http://ch.whu.edu.cn/CN/abstract/abstract5070.shtml

    Ai Tinghua, Guo Renzhong. A Constrained Delaunay Partitioning of Areal Objects to Support Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2000, 25(1): 35-41 http://ch.whu.edu.cn/CN/abstract/abstract5070.shtml
    [10]
    艾廷华, 刘耀林.土地利用数据综合中的聚合与融合[J].武汉大学学报·信息科学版, 2002, 27(5): 486-492 http://ch.whu.edu.cn/CN/abstract/abstract4997.shtml

    Ai Tinghua, Liu Yaolin. Aggregation and Amalgamation in Land-use Data Generalization[J]. Geoma-tics and Information Science of Wuhan University, 2002, 27(5): 486-492 http://ch.whu.edu.cn/CN/abstract/abstract4997.shtml
    [11]
    Penninga F, Verbree E, Quak W, et al. Construction of the Planar Partition Postal Code Map Based on Cadastral Registration[J]. GeoInformatica, 2005, 9(2): 181-204 doi: 10.1007/s10707-005-6430-3
    [12]
    Jones C B, Bundy G L, Ware M J. Map Generalization with a Triangulated Data Structure[J]. Cartography and Geographic Information Systems, 1995, 22(4): 317-331 doi: 10.1559/152304095782540221
    [13]
    Uitermark H, Vogels A, van Oosterom P. Semantic and Geometric Aspects of Integrating Road Networks[M]. Berlin, Heidelberg :Springer, 1999
    [14]
    Touya G. Relevant Space Partitioning for Collaborative Generalization[C]. The 13th Workshop of the ICA Commission on Generalisation and Multiple Representation, Zürich, Switzertand, 2010
    [15]
    Touya G, Berli J, Lokhat I, et al. Experiments to Distribute and Parallelize Map Generalization Processes[J]. The Cartographic Journal, 2017, 54(4): 322-332 doi: 10.1080/00087041.2017.1413787
    [16]
    Thiemann F, Werder S, Globig T, et al. Investigations into Partitioning of Generalization Processes in a Distributed Processing Framework[C]. The 26th International Cartographic Conference, Dresden, Germany, 2013
  • Related Articles

    [1]MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
    [2]SUN Wenzhou, ZENG Anmin, ZHAO Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330. DOI: 10.13203/j.whugis20210337
    [3]ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From Ground Control Point to Digital Control Photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. DOI: 10.13203/j.whugis20230373
    [4]WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
    [5]SUN Wenzhou, YIN Xiaodong, ZENG Anmin, LIU Qiang. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593. DOI: 10.13203/j.whugis20180465
    [6]CHEN Xiaowei, GUO Haitao, ZHANG Baoming, CEN Minyi, LU Jun. Geopositioning Without Ground Control Points for Satellite Image of Island and Reef[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 933-940. DOI: 10.13203/j.whugis20170264
    [7]WANG Mi, YANG Bo, LI Deren, GONG Jianya, PI Yingdong. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433. DOI: 10.13203/j.whugis20160534
    [8]LIU Jiayin, YOU Hongjian, HONG Wen. Modified Orbit Algorithm with Sparse Ground Control Points for Geo\|rectification of Space\|borne SAR Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 262-265.
    [9]QIAN Jun, SHU Ning. Correction of Control Point Slope Based on EM Algorithm and Shading of Single SAR Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1089-1092.
    [10]YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 852-857.
  • Cited by

    Periodical cited type(13)

    1. 王舒曼,应申,蒋跃文,张闯,李霖,刘经南. 智能驾驶场景中高精地图动静态数据关联方法. 武汉大学学报(信息科学版). 2024(04): 640-650 .
    2. 张焱杰,黄炜,刘信陶,张丰源,吴杭彬,应申,刘春. 自动驾驶高精地图信息交互方法. 武汉大学学报(信息科学版). 2024(04): 662-671+680 .
    3. 尹章才,齐如煜,应申. 自动驾驶高精地图的信息传输模型. 武汉大学学报(信息科学版). 2024(04): 527-536 .
    4. 方志祥,王禄斌. 面向行人导航意图探测的脑电分类研究. 测绘学报. 2024(09): 1829-1841 .
    5. 路宏广,赵树恩. 基于鲁棒模型预测的智能汽车轨迹跟踪控制研究. 系统仿真学报. 2022(01): 153-162 .
    6. 钱玉宝,余米森,郭旭涛,黄华宝,李世震. 无人驾驶车辆智能控制技术发展. 科学技术与工程. 2022(10): 3846-3858 .
    7. 章军辉,陈大鹏,李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程. 2020(09): 3394-3403 .
    8. 朱琳琳,张梦炎,张晓丹,俞侃. 自动驾驶汽车的线控转向控制系统. 信息技术. 2020(08): 45-49+54 .
    9. 屈紫君,夏怀成,尚东星,柴晓东,杨树军. 电子稳定控制系统的线控制动控制策略研究. 燕山大学学报. 2020(05): 436-441+449 .
    10. 查云飞,于淼,马芳武,郑寻. 汽车线控转向系统变角传动比控制研究进展综述. 汽车文摘. 2020(12): 1-6 .
    11. 周立,张阳,张一,付丹丹,陈晨,冷超莹,魏征,王英男. 无人时代的海洋测绘技术展望. 海洋技术学报. 2019(01): 85-91 .
    12. 赵望宇,李必军,单云霄,徐豪达. 融合毫米波雷达与单目视觉的前车检测与跟踪. 武汉大学学报(信息科学版). 2019(12): 1832-1840 .
    13. 杨艳明,高增桂,张子龙,沈悦,王林军. 无人驾驶技术发展对策研究. 中国工程科学. 2018(06): 101-104 .

    Other cited types(29)

Catalog

    Article views (1563) PDF downloads (229) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return