ZHU Jianjun, FU Haiqiang, WANG Changcheng. Methods and Research Progress of Underlying Topography Estimation over Forest Areas by InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2030-2038. DOI: 10.13203/j.whugis20180266
Citation: ZHU Jianjun, FU Haiqiang, WANG Changcheng. Methods and Research Progress of Underlying Topography Estimation over Forest Areas by InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2030-2038. DOI: 10.13203/j.whugis20180266

Methods and Research Progress of Underlying Topography Estimation over Forest Areas by InSAR

Funds: 

The National Natural Science Foundation of China 41531068

More Information
  • Author Bio:

    ZHU Jianjun, PhD, professor, specializes in error data processing and its application in InSAR. E-mail:zjj@csu.edu.cn

  • Corresponding author:

    FU Haiqiang, PhD candidate. E-mail:haiqiangfu@csu.edu.cn

  • Received Date: August 25, 2018
  • Published Date: December 04, 2018
  • It is difficult for traditional optical remote sensing technique to extract underlying topography over forest areas because that it can only measure the height of top of canopy. Since the microwave can penetrate into forest and record its vertical information, the microwave remote sensing technique provides the possibility for the underlying topography estimation, which has been a research hotspot. In this paper, the principle of digital elevation model (DEM) extraction by synthetic aperture radar interferometry (InSAR) and the corresponding SAR systems to acquire the InSAR data over forest areas have been introduced firstly. The second part of this paper describes different methods used to extract DEM based on InSAR, polarimetric InSAR (PolInSAR) and tomographic SAR (TomoSAR) technologies. After this, based on the above three SAR technologies, the application and research progress of underlying topography estimation are introduced. Finally, the discussions about the data acquisition, error correction and scattering model reconstruction for underlying topography extraction are introduced.
  • [1]
    Zebker H A, Goldestein R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4996-4999 doi: 10.1029/JB091iB05p04993/full
    [2]
    Rabus B, Eineder M, Roth A, et al. The Shuttle Radar Topography Mission:A New Class of Digital Elevation Models Acquired by Spaceborne Radar[J]. Journal of Photogrammetry and Remote Sensing, 2003, 57(4):241-262 doi: 10.1016/S0924-2716(02)00124-7
    [3]
    Rossi C, Gonzalez F R, Fritz T, et al.TanDEM-X Calibrated Raw DEM Generation[J]. Journal of Photogrammetry and Remote Sensing, 2012, 73(9):12-20 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228325856/
    [4]
    Cloude S R, Papathanassiou K P. Polarimetric SAR Interferometry[J]. IEEE Transactions on Geo-sciences and Remote Sensing, 1998, 36(5):1551-1565 doi: 10.1109/36.718859
    [5]
    Treuhaft R N, Madsen S N, Moghaddam M, et al. Vegetation Characteristics and Underlying Topography from Interferometric Radar[J]. Radio Science, 1996, 31(6):1449-1485 doi: 10.1029/96RS01763
    [6]
    Treuhaft R N, Siqueira P. Vertical Structure of Vegetated Land Surfaces from Interferometric and Polarimetric Radar[J]. Radio Science, 2000, 35(1):141-178 doi: 10.1029/1999RS900108
    [7]
    Baugh C A, Bates P D, Schumann G, et al. SRTM Vegetation Removal and Hydrodynamic Modeling Accuracy[J].Water Resources Research, 2013, 49:5276-5289 doi: 10.1002/wrcr.20412
    [8]
    O'Loughlin F E, Paiva P C D, Durand M, et al. A Multi-sensor Approach Towards a Global Vegetation Corrected SRTM DEM Product[J]. Remote Sensing of Environment, 2015, 182:49-59 http://www.sciencedirect.com/science/article/pii/S0034425716301821
    [9]
    Garestier F, Dubois-Fernandez P, Champion I. Fo-rest Height Inversion Using High-Resolution P-Band PolInSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3544-3559 doi: 10.1109/TGRS.2008.922032
    [10]
    Fu H Q, Zhu J J, Wang C C, et al. Underlying Topography Estimation over Forest Areas Using High-Resolution P-Band Single-Baseline PolInSAR Data[J]. Remote Sensing, 2017363(9):1-17 http://adsabs.harvard.edu/abs/2017RemS....9..363F
    [11]
    Li X W, Guo H D, Wang C L, et al. DEM Generation in the Densely Vegetated Area of Hotan, North-west China Using SIR-C Repeat Pass Polarimetric SAR Interferometry[J]. International Journal of Remote Sensing, 2003, 24(14):2997-3003 doi: 10.1080/0143116031000094773
    [12]
    花奋奋, 赵争, 王萌萌, 等.面向多基线干涉SAR高程反演的全局最优相干方法[J].测绘学报, 2015, 44(11):1263-1270 doi: 10.11947/j.AGCS.2015.20140694

    Hua Fenfen, Zhao Zheng, Wang Mengmeng, et al. A Global Optimal Coherence Method for Multi-baseline InSAR Elevation Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1263-1270 doi: 10.11947/j.AGCS.2015.20140694
    [13]
    Lopez-Martinez C, Papathanassiou K. Cancellation of Scattering Mechanisms in PolInSAR:Application to Underlying Topography Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2):953-965 doi: 10.1109/TGRS.2012.2205157
    [14]
    Papathanassiou K P, Cloude S R. Single-Baseline Polarimetric SAR Interferometry[J]. IEEE Tran-sactions on Geoscience and Remote Sensing, 2001, 39(11):2352-2363 doi: 10.1109/36.964971
    [15]
    Cloude S R. Polarisation:Applications in Remote Sensing[M]. London:Oxford University Press, 2009
    [16]
    Ballester-Berman J, Lopez-Sanchez J. Applying the Freeman-Durden Decomposition Concept to Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):466-479 doi: 10.1109/TGRS.2009.2024304
    [17]
    Neumann M, Ferro-Famil L, Reigber A. Estimation of Forest Structure, Ground and Canopy Layer Characteristics from Multi-baseline Polarimetric Interferometric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1086-1104 doi: 10.1109/TGRS.2009.2031101
    [18]
    Reigber A, Moreira A. First Demonstration of Airborne SAR Tomography Using Multibaseline L-Band Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2142-2152 doi: 10.1109/36.868873
    [19]
    朱建军, 李志伟, 胡俊. InSAR变形监测方法与进展[J].测绘学报, 2017, 46(10):1717-1733 doi: 10.11947/j.AGCS.2017.20170350

    Zhu Jianjun, Li Zhiwei, Hu Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733 doi: 10.11947/j.AGCS.2017.20170350
    [20]
    Toan T L, Quegan S, Davidson M W J, et al. The BIOMASS Mission:Mapping Global Forest Biomass to Better Understand the Terrestrial Carbon Cycle[J]. Remote Sensing of Environment, 2011, 115(11):2850-2860 doi: 10.1016/j.rse.2011.03.020
    [21]
    DLR. Tandem-L: Satellite Mission Proposal for Monitoring Dynamic Processes on the Earth's Surface[OL]. http://www.dlr.de/hr/en/Portaldata/32/Resources/dokumente/broschueren/Tandem-L_web_Broschuere2014_en.pdf, 2014
    [22]
    Papathanassiou K P, Cloude S R. The Effect of Temporal Decorrelation on the Inversion of Forest Parameters from PolInSAR Data[C]. International Geoscience and Remote Sensing Symposium, Monterey, USA, 2003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1294134
    [23]
    Lee S K, Kugler F, Papathanassiou K P, et al. Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1351-1367 doi: 10.1109/JSTARS.2013.2253448
    [24]
    Lavalle M, Simard M, Hensley S. A Temporal Decorrelation Model for Polarimetric Radar Interfero-meters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2880-2888 doi: 10.1109/TGRS.2011.2174367
    [25]
    Lavalle M, Hensley S. Extraction of Structural and Dynamic Properties of Forests from Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):4752-4767 doi: 10.1109/TGRS.2015.2409066
    [26]
    Lu Hongxi, Suo Zhiyong, Guo Rui, et al. S-RVoG Model for Forest Parameters Inversion over Underlying Topography[J]. Electronics Letters, 2013, 49(9):618-620 doi: 10.1049/el.2012.4467
    [27]
    解清华, 汪长城, 朱建军, 等.顾及地形坡度的S-RVOG模型和PD相干最优算法联合反演森林高度[J].测绘学报, 2015, 44(6):686-693 http://d.wanfangdata.com.cn/Periodical/chxb201506013

    Xie Qinghua, Wang Changcheng, Zhu Jianjun, et al.Forest Height Inversion by Combining S-RVOG Model with Terrain Factor and PD Coherence Optimization[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):686-693 http://d.wanfangdata.com.cn/Periodical/chxb201506013
    [28]
    Xie Q H, Zhu J J, Wang C C, et al. A Modified Dual-Baseline PolInSAR Method for Forest Height Estimation[J]. Remote Sensing, 2017, 9:819 doi: 10.3390/rs9080819
    [29]
    Garestier F, Le Toan T. Forest Modeling for Height Inversion Using Single-Baseline InSAR/Pol-InSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1528-1539 doi: 10.1109/TGRS.2009.2032538
    [30]
    Fu H Q, Wang C C, Zhu J J, et al. Estimation of Pine Forest Height and Underlying DEM Using Multi-baseline P-Band PolInSAR Data[J]. Remote Sensing, 2016, 8(10):820 doi: 10.3390/rs8100820
    [31]
    Fu W, Guo H D, Song P, et al. Combination of PolInSAR and LiDAR Techniques for Forest Height Estimation[J]. IEEE Geoscience and Remote Sen-sing Letters, 2017, 14(8):1418-1422 doi: 10.1109/LGRS.2017.2716100
    [32]
    Ballester-Berman J D, Lopez-Sanchez J M. Combination of Direct and Double-Bounce Ground Responses in the Homogeneous Oriented Volume over Ground Model[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(1):54-58 http://ieeexplore.ieee.org/document/5512580/
    [33]
    Cloude S R, Papathanassiou K P. Three-Stage Inversion Process for Polarimetric SAR Interferometry[J].IEEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3):125-134 doi: 10.1049/ip-rsn:20030449
    [34]
    Lee S K, Kugler F, Papathanassiou K P, et al. Multibaseline Polarimetric SAR Interferometry Fo-rest Height Inversion Approaches[C]. PolInSAR Workshop, Frascati, Italy, 2000 http://adsabs.harvard.edu/abs/2011ESASP.695E..63L
    [35]
    Iribe K, Lopez-Martinez C, Papathanassiou K P, et al. Estimation of Ground Topography in Forested Terrain by Means of PolInSAR[C]. IGARSS, Boston, USA, 2008
    [36]
    Hajnsek I, Kugler F, Lee S K, et al. Tropical Fo-rest Parameter Estimation by Means of Pol-InSAR:The INDREX-Ⅱ Campaign[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2):481-493 doi: 10.1109/TGRS.2008.2009437
    [37]
    史磊.多基线植被高与植被下地形估计[D].武汉: 武汉大学, 2013 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201403019.htm

    Shi Lei. Vegetation Height and Underlying Ground Altitude Estimation Based on Multi-baseline PolInSAR Data[D]. Wuhan: Wuhan University, 2013 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201403019.htm
    [38]
    Lavalle M, Khun K. Three-Baseline InSAR Estimation of Forest Height[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1737-1741 doi: 10.1109/LGRS.2014.2307583
    [39]
    Fu H Q, Zhu J J, Wang C C, et al. Underlying Topography Extraction over Forest Areas from Multi-baseline PolInSAR Data[J]. Journal of Geodesy, 2017(9):1-15 doi: 10.1007/s00190-017-1091-1
    [40]
    李兰.森林垂直结构信息P-波段SAR层析提取方法[D].北京: 中国林业科学研究院, 2016 http://cdmd.cnki.com.cn/Article/CDMD-82201-1016251314.htm

    Li Lan. Forest Vertical Information Extraction Based on P-Band SAR Tomography[D]. Beijing: Chinese Academy of Forestry, 2016 http://cdmd.cnki.com.cn/Article/CDMD-82201-1016251314.htm
    [41]
    李文梅.极化干涉SAR层析估测森林垂直结构参数方法研究[D].北京: 中国林业科学研究院, 2013 http://cdmd.cnki.com.cn/Article/CDMD-82201-1013378658.htm

    Li Wenmei. Forest Vertical Structure Parameters Estimation Using Polarimetric Interferometric Tomography SAR[D]. Beijing: Chinese Academy of Forestry, 2013 http://cdmd.cnki.com.cn/Article/CDMD-82201-1013378658.htm
    [42]
    Li X, Liang L, Guo H D, et al. Compressive Sen-sing for Multibaseline Polarimetric SAR Tomography of Forested Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(1):153-166 http://ieeexplore.ieee.org/document/7161359/
    [43]
    Frey O, Meier E. Analyzing Tomographic SAR Data of a Forest with Respect to Frequency, Polarization, and Focusing Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3648-3659 doi: 10.1109/TGRS.2011.2125972
    [44]
    Tebaldini S.Multi-baseline SAR Imaging: Models and Algorithms[D]. Milano: Politecnico Di Milano, 2009
    [45]
    Tebaldini S. Algebraic Synthesis of Forest Scenarios from Multibaseline PolInSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):4132-4142 doi: 10.1109/TGRS.2009.2023785
    [46]
    Tebaldini S. Single and Multipolarimetric SAR Tomography of Forested Areas:A Parametric Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5):2375-2387 doi: 10.1109/TGRS.2009.2037748
    [47]
    Mercer B, Zhang Q, Schwaebisch M, et al. Forest Height and Ground Topography at L-Band from an Experimental Single-Pass Airborne Pol-InSAR System[C]. PolInSAR Workshop, Frascati, Italy, 2009 http://adsabs.harvard.edu/abs/2009ESASP.668E..16M
    [48]
    Pardini M, Papathanassiou K. Sub-canopy Topography Estimation: Experiments with Multibaseline SAR Data at L-Band[C]. IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012 http://ieeexplore.ieee.org/document/6352500/
    [49]
    Kugler F, Schulze D, Hajnsek I, et al. TanDEM-X Pol InSAR Performance for Forest Height Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6404-6422 doi: 10.1109/TGRS.2013.2296533
    [50]
    Kugler F, Lee S K, Hajnsek I, et al. Forest Height Estimation by Means of Pol-InSAR Data Inversion:The Role of the Vertical Wavenumber[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5294-5311 doi: 10.1109/TGRS.2015.2420996
    [51]
    Fu H Q, Zhu J J, Wong C C, et al. A Wavelet Decomposition and Polynomial Fitting-Based Method for the Estimation of Time-Varying Residual Motion Error in Airborne Interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):49-59 doi: 10.1109/TGRS.2017.2727076
    [52]
    Fu H Q, Zhu J J, Wang C C, et al. Atmospheric Effect Correction for InSAR with Wavelet Decomposition-Based Correlation Analysis Between Multipolarization Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5614-5625 doi: 10.1109/TGRS.2018.2821716
  • Related Articles

    [1]MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
    [2]SUN Wenzhou, ZENG Anmin, ZHAO Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330. DOI: 10.13203/j.whugis20210337
    [3]ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From Ground Control Point to Digital Control Photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. DOI: 10.13203/j.whugis20230373
    [4]WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
    [5]SUN Wenzhou, YIN Xiaodong, ZENG Anmin, LIU Qiang. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593. DOI: 10.13203/j.whugis20180465
    [6]CHEN Xiaowei, GUO Haitao, ZHANG Baoming, CEN Minyi, LU Jun. Geopositioning Without Ground Control Points for Satellite Image of Island and Reef[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 933-940. DOI: 10.13203/j.whugis20170264
    [7]WANG Mi, YANG Bo, LI Deren, GONG Jianya, PI Yingdong. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433. DOI: 10.13203/j.whugis20160534
    [8]LIU Jiayin, YOU Hongjian, HONG Wen. Modified Orbit Algorithm with Sparse Ground Control Points for Geo\|rectification of Space\|borne SAR Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 262-265.
    [9]QIAN Jun, SHU Ning. Correction of Control Point Slope Based on EM Algorithm and Shading of Single SAR Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1089-1092.
    [10]YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 852-857.
  • Cited by

    Periodical cited type(13)

    1. 王舒曼,应申,蒋跃文,张闯,李霖,刘经南. 智能驾驶场景中高精地图动静态数据关联方法. 武汉大学学报(信息科学版). 2024(04): 640-650 .
    2. 张焱杰,黄炜,刘信陶,张丰源,吴杭彬,应申,刘春. 自动驾驶高精地图信息交互方法. 武汉大学学报(信息科学版). 2024(04): 662-671+680 .
    3. 尹章才,齐如煜,应申. 自动驾驶高精地图的信息传输模型. 武汉大学学报(信息科学版). 2024(04): 527-536 .
    4. 方志祥,王禄斌. 面向行人导航意图探测的脑电分类研究. 测绘学报. 2024(09): 1829-1841 .
    5. 路宏广,赵树恩. 基于鲁棒模型预测的智能汽车轨迹跟踪控制研究. 系统仿真学报. 2022(01): 153-162 .
    6. 钱玉宝,余米森,郭旭涛,黄华宝,李世震. 无人驾驶车辆智能控制技术发展. 科学技术与工程. 2022(10): 3846-3858 .
    7. 章军辉,陈大鹏,李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程. 2020(09): 3394-3403 .
    8. 朱琳琳,张梦炎,张晓丹,俞侃. 自动驾驶汽车的线控转向控制系统. 信息技术. 2020(08): 45-49+54 .
    9. 屈紫君,夏怀成,尚东星,柴晓东,杨树军. 电子稳定控制系统的线控制动控制策略研究. 燕山大学学报. 2020(05): 436-441+449 .
    10. 查云飞,于淼,马芳武,郑寻. 汽车线控转向系统变角传动比控制研究进展综述. 汽车文摘. 2020(12): 1-6 .
    11. 周立,张阳,张一,付丹丹,陈晨,冷超莹,魏征,王英男. 无人时代的海洋测绘技术展望. 海洋技术学报. 2019(01): 85-91 .
    12. 赵望宇,李必军,单云霄,徐豪达. 融合毫米波雷达与单目视觉的前车检测与跟踪. 武汉大学学报(信息科学版). 2019(12): 1832-1840 .
    13. 杨艳明,高增桂,张子龙,沈悦,王林军. 无人驾驶技术发展对策研究. 中国工程科学. 2018(06): 101-104 .

    Other cited types(29)

Catalog

    Article views (1956) PDF downloads (410) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return