CHEN Ruizhi, YE Feng. An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176
Citation: CHEN Ruizhi, YE Feng. An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176

An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information

Funds: 

The National Key Research and Development Program of China 2016YFB0502200

The National Key Research and Development Program of China 2016YFB0502201

the National Natural Science Foundation of China 91638203

More Information
  • Author Bio:

    CHEN Ruizhi, PhD, professor, majors in ubiquitous positioning, mobile geospatial computing and satellite navigation. E-mail: ruizhi.chen@whu.edu.cn

  • Corresponding author:

    YE Feng, PhD candidate. E-mail: yefeng92@whu.edu.cn

  • Received Date: May 14, 2018
  • Published Date: December 04, 2018
  • Indoor positioning is currently a research hot topic for industrial and scientific communities. Wi-Fi signal has been a common positioning signal adapted researchers. Received signal strength indicator is a traditional measurement used for indoor positioning. It can be easily affected by many factors such as the change of environment. Therefore, it is difficult to achieve such an accuracy that can be used in practice and hard to deploy the positioning solution in a large-scale. More and more resear-chers are now focusing on using channel state information as the measurement, which contains an essential description of Wi-Fi signal propagation and provides more details about the communication channel. This information can be transformed to a useful measurement for positioning. In this paper, we introduce the fundamental description of channel state information and classify the positioning approaches into three categories, which are fingerprinting-based, angle of arrival-based and ranging-based, respectively. The current states of these technologies have been reviewed in details, and the pros and cons have been identified and compared. We conclude the paper with a discussion about the directions in this field.
  • [1]
    Bahl P, Padmanabhan V N. RADAR: An In-Buil-ding RF-Based User Location and Tracking System[C]. 19th Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000 http://www.researchgate.net/publication/3842777_RADAR_an_in-building_RF-based_user_location_and_tracking_system
    [2]
    Hoefel R P F. IEEE 802.11n: On the Performance of Channel Estimation Schemes over OFDM MIMO Spatially-Correlated Frequency Selective Fading TGn Channels[C].XXX Brazilian Symposium on Telecommunications, Brasilia, Brazil, 2012
    [3]
    Halperin D, Hu W, Sheth A, et al. Tool Release:Gathering 802.11n Traces with Channel State Information[J]. ACM Sigcomm Computer Communication Review, 2011, 41(1):53 doi: 10.1145/1925861
    [4]
    Zheng Z W. Channel Estimation and Channel Equa-lization for the OFDM-Based WLAN Systems[C]. International Conference on E-Business and E-Go-vernment, IEEE, Guangzhou, China, 2010
    [5]
    Xie Y, Li Z, Li M. Precise Power Delay Profiling with Commodity WiFi[C]. ACM International Conference on Mobile Computing and Networking, Paris, France, 2015 http://ieeexplore.ieee.org/document/8423070/
    [6]
    Youssef M, Agrawala A. The Horus WLAN Location Determination System[C]. International Conference on Mobile Systems, Applications, and Ser-vices, Washington D C, USA, 2005 doi: 10.1007/s10384-009-0656-9
    [7]
    李桢, 黄劲松.基于RSSI抗差滤波的WiFi定位[J].武汉大学学报·信息科学版, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/Y2016/V41/I3/361

    Li Zhen, Huang Jingsong. WiFi Positioning Using Robust Filtering with RSSI[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):361-366 http://ch.whu.edu.cn/CN/Y2016/V41/I3/361
    [8]
    Xiao J, Wu K, Yi Y, et al. FIFS: Fine-Grained Indoor Fingerprinting System[C]. International Conference on Computer Communications and Networks, IEEE, Munich, 2012 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6289200
    [9]
    Chapre Y, Ignjatovic A, Seneviratne A, et al. CSI-MIMO: Indoor Wi-Fi Fingerprinting System[C]. 39th Annual IEEE Conference on Local Computer Networks, Edomonton, AB, Canada, 2014 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6925773
    [10]
    Wang X, Gao L, Mao S, et al. DeepFi: Deep Learning for Indoor Fingerprinting Using Channel State Information[C]. Wireless Communications and Networking Conference, IEEE, New Orleans, USA, 2015 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7127718
    [11]
    Choi J S, Lee W H, Lee J H, et al. Deep Learning Based NLOS Identification with Commodity WLAN Devices[J].IEEE Transactions on Vehicular Technology, 2017, doi: 10.1109/TVT.2017.2780121
    [12]
    Huang X, Guo S, Wu Y, et al. A Fine-Grained Indoor Fingerprinting Localization Based on Magnetic Field Strength and Channel State Information[J]. Pervasive & Mobile Computing, 2017, 41, doi: 10.1016/j.pmcj.2017.08.003
    [13]
    Schmidt R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Transactions on Antennas & Propagation, 1986, 34(3):276-280 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC027950176/
    [14]
    Roy R, Paulraj A, Kailath T. Estimation of Signal Parameters via Rotational Invariance Techniques-ESPRIT[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 2002, 37(7):984-995 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb-e201802007
    [15]
    Xiong J, Jamieson K. Array Track: A Fine-Grained Indoor Location System[C]. Usenix Conference on Networked Systems Design and Implementation, USENIX Association, Lombard, IL, 2013 http://dl.acm.org/citation.cfm?id=2482626.2482635
    [16]
    Gjengset J, Xiong J, Mcphillips G, et al. Phaser: Enabling Phased Array Signal Processing on Commodity WiFi Access Points[C]. International Conference on Mobile Computing and Networking. ACM, Hawai, USA, 2014 http://dl.acm.org/authorize?n87317
    [17]
    Kotaru M, Joshi K, Bharadia D, et al. SpotFi:De-cimeter Level Localization Using WiFi[J].ACM Sigcomm Computer Communication Review, 2015, 45(4):269-282
    [18]
    Tzur A, Amrani O, Wool A. Direction Finding of Rogue Wi-Fi Access Points Using an Off-the-Shelf MIMO-OFDM Receiver[J]. Physical Communication, 2015, 17(C):149-164 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=567fd7c3ca74b0e4633105e8eafca2d5
    [19]
    Schüssel M. Angle of Arrival Estimation Using WiFi and Smartphones[C]. International Confe-rence on Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain, 2016
    [20]
    Wu K, Xiao J, Yi Y, et al. FILA: Fine-Grained Indoor Localization[C]. IEEE INFOCOM, Orlando, USA, 2012 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6195606
    [21]
    Günther A, Hoene C. Measuring Round Trip Times to Determine the Distance Between WLAN Nodes[C]. International Conference on Research in Networking, Reunion Island, France, 2005 http://www.springerlink.com/content/x969830hpygxda7b
    [22]
    Ciurana M, Barcelo-Arroyo F, Izquierdo F. A Ranging System with IEEE 802.11 Data Frames[C]. IEEE Radio and Wireless Symposium, Long Beach, CA, 2007 http://ieeexplore.ieee.org/document/4160668/
    [23]
    Giustiniano D, Mangold S. CAESAR: Carrier Sense-Based Ranging in Off-the-Shelf 802.11 Wireless LAN[C]. The 7th Conference on Emerging Networking Experiments and Technologies, Tokyo, Japan, 2011 http://dl.acm.org/citation.cfm?id=2079306
    [24]
    Kumar S, Vasisht D, Katabi D. Decimeter-Level Localization with a Single WiFi Access Point[C]. Usenix Conference on Networked Systems Design and Implementation, USENIX Association, Santa Clara, CA, USA, 2016 http://dl.acm.org/citation.cfm?id=2930623
    [25]
    Xiong J, Sundaresan K, Jamieson K. ToneTrack: Leveraging Frequency-Agile Radios for Time-Based Indoor Wireless Localization[C]. International Conference on Mobile Computing and Networking, ACM, Paris, France, 2015 doi: 10.1145/2789168.2790125
    [26]
    Li X, Pahlavan K. Super-Resolution TOA Estimation with Diversity for Indoor Geolocation[J]. IEEE Transactions on Wireless Communications, 2004, 3(1):224-234 doi: 10.1109/TWC.2003.819035
  • Related Articles

    [1]MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
    [2]SUN Wenzhou, ZENG Anmin, ZHAO Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330. DOI: 10.13203/j.whugis20210337
    [3]ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From Ground Control Point to Digital Control Photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. DOI: 10.13203/j.whugis20230373
    [4]WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
    [5]SUN Wenzhou, YIN Xiaodong, ZENG Anmin, LIU Qiang. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593. DOI: 10.13203/j.whugis20180465
    [6]CHEN Xiaowei, GUO Haitao, ZHANG Baoming, CEN Minyi, LU Jun. Geopositioning Without Ground Control Points for Satellite Image of Island and Reef[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 933-940. DOI: 10.13203/j.whugis20170264
    [7]WANG Mi, YANG Bo, LI Deren, GONG Jianya, PI Yingdong. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433. DOI: 10.13203/j.whugis20160534
    [8]LIU Jiayin, YOU Hongjian, HONG Wen. Modified Orbit Algorithm with Sparse Ground Control Points for Geo\|rectification of Space\|borne SAR Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 262-265.
    [9]QIAN Jun, SHU Ning. Correction of Control Point Slope Based on EM Algorithm and Shading of Single SAR Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1089-1092.
    [10]YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 852-857.
  • Cited by

    Periodical cited type(13)

    1. 王舒曼,应申,蒋跃文,张闯,李霖,刘经南. 智能驾驶场景中高精地图动静态数据关联方法. 武汉大学学报(信息科学版). 2024(04): 640-650 .
    2. 张焱杰,黄炜,刘信陶,张丰源,吴杭彬,应申,刘春. 自动驾驶高精地图信息交互方法. 武汉大学学报(信息科学版). 2024(04): 662-671+680 .
    3. 尹章才,齐如煜,应申. 自动驾驶高精地图的信息传输模型. 武汉大学学报(信息科学版). 2024(04): 527-536 .
    4. 方志祥,王禄斌. 面向行人导航意图探测的脑电分类研究. 测绘学报. 2024(09): 1829-1841 .
    5. 路宏广,赵树恩. 基于鲁棒模型预测的智能汽车轨迹跟踪控制研究. 系统仿真学报. 2022(01): 153-162 .
    6. 钱玉宝,余米森,郭旭涛,黄华宝,李世震. 无人驾驶车辆智能控制技术发展. 科学技术与工程. 2022(10): 3846-3858 .
    7. 章军辉,陈大鹏,李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程. 2020(09): 3394-3403 .
    8. 朱琳琳,张梦炎,张晓丹,俞侃. 自动驾驶汽车的线控转向控制系统. 信息技术. 2020(08): 45-49+54 .
    9. 屈紫君,夏怀成,尚东星,柴晓东,杨树军. 电子稳定控制系统的线控制动控制策略研究. 燕山大学学报. 2020(05): 436-441+449 .
    10. 查云飞,于淼,马芳武,郑寻. 汽车线控转向系统变角传动比控制研究进展综述. 汽车文摘. 2020(12): 1-6 .
    11. 周立,张阳,张一,付丹丹,陈晨,冷超莹,魏征,王英男. 无人时代的海洋测绘技术展望. 海洋技术学报. 2019(01): 85-91 .
    12. 赵望宇,李必军,单云霄,徐豪达. 融合毫米波雷达与单目视觉的前车检测与跟踪. 武汉大学学报(信息科学版). 2019(12): 1832-1840 .
    13. 杨艳明,高增桂,张子龙,沈悦,王林军. 无人驾驶技术发展对策研究. 中国工程科学. 2018(06): 101-104 .

    Other cited types(29)

Catalog

    Article views (3102) PDF downloads (804) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return