XU Caijun, WANG Jianjun, XIONG Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092. DOI: 10.13203/j.whugis20180149
Citation: XU Caijun, WANG Jianjun, XIONG Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092. DOI: 10.13203/j.whugis20180149

Retrospection and Perspective for Earthquake Stress Triggering

Funds: 

The National Natural Science Foundation of China (Key Program) 41431069

the National Natural Science Foundation of China 41574002

the National Natural Science Foundation of China 41774011

the National Basic Research Program (973 Program) of China 2013CB733303

More Information
  • Author Bio:

    XU Caijun, PhD, professor, Distinguished Professor of Changjiang Scholars Program of China, specializes in geodesy and geodynamics. E-mail: cjxu@sgg.whu.edu.cn

  • Corresponding author:

    WANG Jianjun, PhD, associate professor.E-mail: jjwang@sgg.whu.edu.cn

  • Received Date: May 01, 2018
  • Published Date: December 04, 2018
  • Earthquake geodesy is a new branch of modern geodesy, which was generated as a result of its thorough applications to various geoscience problems. Earthquake stress triggering based on geodetic data is one of the main research directions of earthquake geodesy, which is of great significance to earthquake prediction and disaster prevention and mitigation.This paper reviews and summarizes the researches on earthquake stress triggering from three aspects:static stress triggering, dynamic stress triggering and viscoelastic stress triggering, and introduces the latest progresses of relevant studies on earthquake stress triggering. The future development for the realm of earthquake stress triggering is also in prospect.
  • [1]
    King G C P, Stein R S, Lin J. Static Stress Changes and the Triggering of Earthquakes[J].Bull Seismol Soc Am, 1994, 84(3):935-953 http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201001004
    [2]
    Steacy S, Gomberg J, Cocco M. Introduction to Special Section:Stress Transfer, Earthquake Triggering, and Time-Dependent Seismic Hazard[J]. J Geophys Res, 2005, 110(B05S01):1-12 doi: 10.1029-2005JB003692/
    [3]
    Cocco M, Rice J R. Pore Pressure and Poroelasticity Effects in Coulomb Stress Analysis of Earthquake Interactions[J]. J Geophys Res, 2002, 107(B2):1-17 doi: 10.1029/2000JB000138/references
    [4]
    Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-space[J]. Bull Seismol Soc Am, 1992, 82(2):1018-1040 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135
    [5]
    Pollitz F F. Postseismic Relaxation Theory on a Spherical Earth[J]. Bull Seismol Soc Am, 1992, 82(1):422-453
    [6]
    Hill D P, Reasenberg P A, Michael J, et al. Seismicity Remotely Triggered by the Magnitude 7.3 Landers, California, Earthquake[J]. Science, 1993, 260(5114):1617-1623 doi: 10.1126/science.260.5114.1617
    [7]
    Nalbant S S, Mccloskey J. Stress Evolution Before and After the 2008 Wenchuan, China Earthquake[J]. Earth Planet Sci Lett, 2011, 307(1):222-232 http://www.sciencedirect.com/science/article/pii/S0012821X11002664
    [8]
    Zhao B, Bürgmann R, Wang D, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. J Geophys Res, 2017, 122(10):8376-8401 doi: 10.1002/2017JB014366
    [9]
    Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-pressure Transients[J]. Nature, 2003, 424(6945):179-183 doi: 10.1038/nature01776
    [10]
    Stein R S, King G C P, Lin J. Change in Failure Stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude=7.4 Landers Earthquake[J]. Science, 1992, 258(5086):1328-1332 doi: 10.1126/science.258.5086.1328
    [11]
    Toda S, Lin J, Stein R S. Using the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake to Test the Coulomb Stress Triggering Hypothesis and to Calculate Faults Brought Closer to Failure[J]. Earth Planet Space, 2011, 63:725-730 doi: 10.5047/eps.2011.05.010
    [12]
    熊维, 谭凯, 刘刚, 等.2015年尼泊尔Mw 7.9地震对青藏高原活动断裂同震、震后应力影响[J].地球物理学报, 2015, 58(11):4305-4316 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQWX201511036&dbname=CJFD&dbcode=CJFQ

    Xiong Wei, Tan Kai, Liu Gang, et al. Coseismic and Postseismic Coulomb Stress Changes on Surrounding Major Faults Caused by the 2015 Nepal Mw 7.9 Earthquake[J].Chinese J Geophys, 2015, 58(11):4305-4316 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQWX201511036&dbname=CJFD&dbcode=CJFQ
    [13]
    汪建军, 许才军. 2017年Mw 6.5九寨沟地震激发的同震库仑应力变化及其对周边断层的影响[J].地球物理学报, 2017, 60(11):4398-4420 doi: 10.6038/cjg20171127

    Wang Jianjun, Xu Caijun. Coseismic Coulomb Stress Changes Associated with the 2017 Mw 6.5 Jiuzhaigou Earthquake (China) and Its Impacts on Surrounding Major Faults[J].Chinese J Geophys, 2017, 60(11):4398-4420 doi: 10.6038/cjg20171127
    [14]
    傅征祥, 刘桂萍, 陈棋福.青藏高原北缘海原、古浪、昌马大地震间相互作用的动力学分析[J].地震地质, 2001, 23(1):35-42 doi: 10.3969/j.issn.0253-4967.2001.01.004

    Fu Zhengxiang, Liu Guiping, Chen Qifu. Dynamic Analysis on Interaction Between the Haiyuan-Gulang-Changma Great Earthquake in the North Boundary of the Tibetan Plateau[J]. Seismol Geol, 2001, 23(1):35-42 doi: 10.3969/j.issn.0253-4967.2001.01.004
    [15]
    Papadimitriou E, Wen X Z, Karakostas V, et al. Earthquake Triggering Along the Xianshuihe Fault Zone of Western Sichuan, China[J]. Pure Appl Geophys, 2004, 161:1683-1707 doi: 10.1007/s00024-003-2471-4
    [16]
    Li L, Yao D, Meng X, et al. Increasing Seismicity in Southern Tibet Following the 2015 Mw 7.8 Gorkha, Nepal Earthquake[J].Tectonophys, 2016, 714:62-70 http://www.sciencedirect.com/science/article/pii/S004019511630333X
    [17]
    Freed A M, Lin J. Delayed Triggering of the 1999 Hector Mine Earthquake by Viscoelastic Stress Transfer[J]. Nature, 2001, 411:180-183 doi: 10.1038/35075548
    [18]
    Jia K, Zhou S, Zhuang J, et al. Did the 2008 Mw 7.9 Wenchuan Earthquake Trigger the Occurrence of the 2017 Mw 6.5 Jiuzhaigou Earthquake in Sichuan, China?[J]. J Geophys Res, 2018, doi: 10.1002/2017JB015165
    [19]
    Stein R S, Barka A A, Dieterich J H. Progressive Failure on the North Anatolian Fault Since 1939 by Earthquake Stress Triggering[J]. Geophys J Int, 1997, 128:594-604 doi: 10.1111/gji.1997.128.issue-3
    [20]
    Nalbant S S, Hubert A, King G C P. Stress Coupling Between Earthquakes in Northwest Turkey and the North Aegean Sea[J]. J Geophys Res, 1998, 103(B10):24469-24486 doi: 10.1029/98JB01491
    [21]
    McCloskey J, Nalbant S S, Steacy S. Indonesian Earthquake:Earthquake Risk from Coseismic Stress[J]. Nature, 2005, 434(7031):291 doi: 10.1038/434291a
    [22]
    Toda S, Lin J, Meghraoui M, et al. 12 May 2008 M=7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems[J]. Geophys Res Lett, 2008, 35(L17305):1-6 doi: 10.1029-2008GL034903/
    [23]
    万永革, 盛书中, 李祥, 等. 2015年尼泊尔强震序列对中国大陆的应力影响[J].地球物理学报, 2015, 58(11):4277-4286 http://d.old.wanfangdata.com.cn/Periodical/gjdzdt201509012

    Wan Yongge, Sheng Shuzhong, Li Xiang, et al. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland[J]. Chinese J Geophys, 2015, 58(11):4277-4286 http://d.old.wanfangdata.com.cn/Periodical/gjdzdt201509012
    [24]
    Shan B, Zheng Y, Liu C L, et al. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M 7.0 Jiuzhaigou Earthquake, and Its Relationship with the 2008 Wenchuan Earthquake[J]. Sci China Earth Sci, 2017, 60(12):1-9 doi: 10.1007/s11430-017-9125-2
    [25]
    Brodsky E E, Elst N J V D. The Uses of Dynamic Earthquake Triggering[J]. Annu Rev Earth Planet Sci, 2014, 42(1):317-339 doi: 10.1146/annurev-earth-060313-054648
    [26]
    Freed A M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer[J]. Annu Rev Earth Planet Sci, 2005, 33:335-367 doi: 10.1146/annurev.earth.33.092203.122505
    [27]
    Wu C, Peng Z, Wang W, et al. Dynamic Triggering of Shallow Earthquakes Near Beijing, China[J].Geophys J Int, 2011, 185(3):1321-1334 doi: 10.1111/gji.2011.185.issue-3
    [28]
    Pollitz F F, Stein R S, Sevilgen V, et al. The 11 April 2012 M=8.6 East Indian Ocean Earthquake Triggered Large Aftershocks Worldwide[J]. Nature, 2012, 490(7419):250-253 doi: 10.1038/nature11504
    [29]
    Gomberg J, Sherrod B. Crustal Earthquake Triggering Bymodern Great Earthquakes on Subduction Zone Thrusts[J].J Geophys Res, 2014, 119:1235-1250 doi: 10.1002/2012JB009826
    [30]
    Han L, Peng Z, Johnson C W, et al. Shallow Microearthquakes Near Chongqing, China Triggered by the Rayleigh Waves of the 2015 M7.8 Gorkha, Nepal Earthquake[J]. Earth Planet Sci Lett, 2017, 479:231-240 doi: 10.1016/j.epsl.2017.09.024
    [31]
    Kilb D, Gomberg J, Bodin P. Earthquake Triggering by Dynamic Stress[J]. Nature, 2000, 408:570-574 doi: 10.1038/35046046
    [32]
    Prejean S G, Hill D P. The Influence of Tectonic Environment on Dynamic Earthquake Triggering:A Review and Case Study on Alaskan Volcanoes[J].Tectonophys, 2018, 745:293-304 doi: 10.1016/j.tecto.2018.08.007
    [33]
    徐晶, 邵志刚, 马宏生, 等.汶川8.0级地震和芦山7.0级地震对周边断层的影响[J].地震, 2014, 34(4):40-49 http://d.old.wanfangdata.com.cn/Periodical/diz201404005

    Xu Jing, Shao Zhigang, Ma Hongsheng, et al. Impact of the 2008 Wenchuan 8.0 and the 2013 Lushan 7.0 Earthquakes Along the Longmenshan Fault Zone on Surrounding Faults[J]. Earthquake, 2014, 34(4):40-49 http://d.old.wanfangdata.com.cn/Periodical/diz201404005
    [34]
    雷兴林, 马胜利, 苏金蓉, 等.汶川地震后中下地壳及上地幔的粘弹性效应引起的应力变化与芦山地震的发生机制[J].地震地质, 2013, 35(2):411-422 doi: 10.3969/j.issn.0253-4967.2013.02.019

    Lei Xinglin, Ma Shengli, Su Jinrong, et al. Inelastic Triggering of the 2013 Mw 6.6 Lushan Earthquake by the 2008 Mw 7.9 Wenchuan Earthquake[J]. Seismol Geol, 2013, 35(2):411-422 doi: 10.3969/j.issn.0253-4967.2013.02.019
    [35]
    Wang Y, Wang F, Wang M, et al. Coulomb Stress Change and Evolution Induced by the 2008 Wenchuan Earthquake and Its Delayed Triggering of the 2013 Mw 6.6 Lushan Earthquake[J]. Seismol ResLett, 2014, 85(1):52-59 http://cn.bing.com/academic/profile?id=82feb3440c3d1cbff1e3d8ed7cc82c30&encoded=0&v=paper_preview&mkt=zh-cn
    [36]
    Segou M, Parsons T. Testing Earthquake Links in Mexico from 1978 to the 2017 M=8.1 Chiapas and M=7.1 Puebla Shocks[J]. Geophys Res Lett, 2018, 45:708-714 doi: 10.1002/grl.v45.2
    [37]
    Cattin R, Avouac J P. Modeling Mountain Building and the Seismic Cycle in the Himalaya of Nepal[J]. J Geophys Res, 2000, 105(B6):13389-13407 doi: 10.1029/2000JB900032
    [38]
    Bollinger L, Avouac J P, Cattin R, et al. Stress Buildup in the Himalaya[J].J Geophys Res, 2004, 109:B11405 doi: 10.1029/2003JB002911/full
    [39]
    Xiong W, Tan K, Qiao X J, et al. Coseismic, Postseismic and Interseismic Coulomb Stress Evolution Along the Himalayan Main Frontal Thrust Since 1803[J]. Pure Appl Geophys, 2017, 174:1889-1905 doi: 10.1007/s00024-017-1525-y
    [40]
    Shan B, Xiong X, Wang R J, et al. Coulomb Stress Evolution Along Xianshuihe-Xiaojiang Fault System Since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008[J]. Earth Planet Sci Lett, 2013, 377-378(5):199-210 http://www.sciencedirect.com/science/article/pii/S0012821X13003671
    [41]
    Shao Z, Xu J, Ma H, et al. Coulomb Stress Evolution over the Past 200 Years and Seismic Hazard Along the Xianshuihe Fault Zone of Sichuan, China[J]. Tectonophys, 2016, 670:48-65 doi: 10.1016/j.tecto.2015.12.018
    [42]
    Wang J J, Xu C J, Freymueller J T, et al. Probing Coulomb Stress Triggering Effects for a Mw>6.0 Earthquake Sequence from 1997 to 2014 Along the Periphery of the Bayan Har Block on the Tibetan Plateau[J]. Tectonophys, 2017, 694:249-267 doi: 10.1016/j.tecto.2016.11.009
    [43]
    Hardebeck J L. Stress Triggering and Earthquake Probability Estimates[J]. J Geophys Res, 2004, 109:B04310 doi: 10.1029/2003JB002437/full
    [44]
    Gomberg J, Belardinelli M E, Cocco M, et al. Time-Dependent Earthquake Probabilities[J]. J Geophys Res, 2005, 110:B05S04 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216591597/
    [45]
    Parsons T. Significance of Stress Transfer in Time-Dependent Earthquake Probability Calculations[J]. J Geophys Res, 2005, 110:B05S02 doi: 10.1029-2004JB003190/
    [46]
    Cattania C, Hainzl S, Wang L, et al. Propagation of Coulomb Stress Uncertainties Inphysics-based Aftershock Models[J]. J Geophys Res, 2014, 119:7846-7864 doi: 10.1002/2014JB011183
    [47]
    Wang J J, Xu C J, Freymueller J, et al. Sensitivity of Coulomb Stress Change to the Parameters of the Coulomb Failure Model:A Case Study Using the 2008 Mw 7.9 Wenchuan Earthquake[J].J Geophys Res, 2014, 119(4):3371-3392 doi: 10.1002/2012JB009860
    [48]
    Ziv A, Rubin A M. Static Stress Transfer and Earthquake Triggering:No Lower Threshold in Sight?[J].J Geophys Res, 2000, 105(B6):13631-13642 doi: 10.1029/2000JB900081
    [49]
    Shan B, Xiong X, Zheng Y, et al. The Co-seismic Coulomb Stress Change and Expected Seismicity Rate Caused by 14 April 2010 Ms=7.1 Yushu, China, Earthquake[J]. Tectonophys, 2011, 510(3-4):345-353 doi: 10.1016/j.tecto.2011.08.003
    [50]
    Jónsson S. Stress Interaction Between Magma Accumulation and Trapdoor Faulting on Sierra Negra Volcano, Galápagos[J]. Tectonophys, 2009, 471(1-2):36-44 doi: 10.1016/j.tecto.2008.08.005
    [51]
    Kraner M L, Holt W E, Borsa A A. Seasonal Nontectonic Loading Inferred from cGPS as a Potential Trigger for the M 6.0 South Napa Earthquake[J]. J Geophys Res, 2018, 123:5300-5322
    [52]
    Yin X Z, Chen J H, Peng Z G, et al. Evolution and Distribution of the Early Aftershocks Following the 2008 Mw 7.9 Wenchuan Earthquake in Sichuan, China[J].J Geophys Res, 2018, doi: 10.1029/2018JB015575
    [53]
    Brown M R M, Ge S. Small Earthquakes Matter in Injection-Induced Seismicity[J]. Geophys Res Lett, 2018, 45:5445-5453 doi: 10.1029/2018GL077472
    [54]
    Radiguet M, Perfettini H, Cotte N, et al. Triggering of the 2014 Mw 7. 3 Papanoa Earthquake by a Slow Slip Event in Guerrero, Mexico[J].Nat Geosci, 2016, 9(11):829-833 doi: 10.1038/ngeo2817
    [55]
    Xu X, Ward L, Jiang J, et al. Surface Creep Rate of the Southern San Andreas Fault Modulated by Stress Perturbations from Nearby Large Events[J]. J Geophys Res, 2018, doi: 10.1029/2018GL080137
  • Related Articles

    [1]MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
    [2]SUN Wenzhou, ZENG Anmin, ZHAO Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330. DOI: 10.13203/j.whugis20210337
    [3]ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From Ground Control Point to Digital Control Photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. DOI: 10.13203/j.whugis20230373
    [4]WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
    [5]SUN Wenzhou, YIN Xiaodong, ZENG Anmin, LIU Qiang. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593. DOI: 10.13203/j.whugis20180465
    [6]CHEN Xiaowei, GUO Haitao, ZHANG Baoming, CEN Minyi, LU Jun. Geopositioning Without Ground Control Points for Satellite Image of Island and Reef[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 933-940. DOI: 10.13203/j.whugis20170264
    [7]WANG Mi, YANG Bo, LI Deren, GONG Jianya, PI Yingdong. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433. DOI: 10.13203/j.whugis20160534
    [8]LIU Jiayin, YOU Hongjian, HONG Wen. Modified Orbit Algorithm with Sparse Ground Control Points for Geo\|rectification of Space\|borne SAR Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 262-265.
    [9]QIAN Jun, SHU Ning. Correction of Control Point Slope Based on EM Algorithm and Shading of Single SAR Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1089-1092.
    [10]YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 852-857.
  • Cited by

    Periodical cited type(13)

    1. 王舒曼,应申,蒋跃文,张闯,李霖,刘经南. 智能驾驶场景中高精地图动静态数据关联方法. 武汉大学学报(信息科学版). 2024(04): 640-650 .
    2. 张焱杰,黄炜,刘信陶,张丰源,吴杭彬,应申,刘春. 自动驾驶高精地图信息交互方法. 武汉大学学报(信息科学版). 2024(04): 662-671+680 .
    3. 尹章才,齐如煜,应申. 自动驾驶高精地图的信息传输模型. 武汉大学学报(信息科学版). 2024(04): 527-536 .
    4. 方志祥,王禄斌. 面向行人导航意图探测的脑电分类研究. 测绘学报. 2024(09): 1829-1841 .
    5. 路宏广,赵树恩. 基于鲁棒模型预测的智能汽车轨迹跟踪控制研究. 系统仿真学报. 2022(01): 153-162 .
    6. 钱玉宝,余米森,郭旭涛,黄华宝,李世震. 无人驾驶车辆智能控制技术发展. 科学技术与工程. 2022(10): 3846-3858 .
    7. 章军辉,陈大鹏,李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程. 2020(09): 3394-3403 .
    8. 朱琳琳,张梦炎,张晓丹,俞侃. 自动驾驶汽车的线控转向控制系统. 信息技术. 2020(08): 45-49+54 .
    9. 屈紫君,夏怀成,尚东星,柴晓东,杨树军. 电子稳定控制系统的线控制动控制策略研究. 燕山大学学报. 2020(05): 436-441+449 .
    10. 查云飞,于淼,马芳武,郑寻. 汽车线控转向系统变角传动比控制研究进展综述. 汽车文摘. 2020(12): 1-6 .
    11. 周立,张阳,张一,付丹丹,陈晨,冷超莹,魏征,王英男. 无人时代的海洋测绘技术展望. 海洋技术学报. 2019(01): 85-91 .
    12. 赵望宇,李必军,单云霄,徐豪达. 融合毫米波雷达与单目视觉的前车检测与跟踪. 武汉大学学报(信息科学版). 2019(12): 1832-1840 .
    13. 杨艳明,高增桂,张子龙,沈悦,王林军. 无人驾驶技术发展对策研究. 中国工程科学. 2018(06): 101-104 .

    Other cited types(29)

Catalog

    Article views (2130) PDF downloads (352) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return