YUAN Yunbin, ZHANG Baocheng, LI Min. Precise Estimation and Characteristic Analysis of Multi-GNSS Receiver Differential Code Biases[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2106-2111. DOI: 10.13203/j.whugis20180135
Citation: YUAN Yunbin, ZHANG Baocheng, LI Min. Precise Estimation and Characteristic Analysis of Multi-GNSS Receiver Differential Code Biases[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2106-2111. DOI: 10.13203/j.whugis20180135

Precise Estimation and Characteristic Analysis of Multi-GNSS Receiver Differential Code Biases

Funds: 

The National Key Research and Development Program of China 2016YFB0501900

the National Natural Science Foundation of China 41674022

the National Natural Science Foundation of China 41604031

LU Jiaxi International Team Program Supported by the Wang Kuancheng Education Foundation and CAS 

More Information
  • Author Bio:

    YUAN Yunbin, PhD, prefessor, specializes in GNSS satellite navigation, atmospheric delay correction, precise positioning, orbit determination and system imitation test. E-mail: yybgps@whigg.ac.cn

  • Received Date: September 02, 2018
  • Published Date: December 04, 2018
  • Pseudorange observations of Global Navigation Satellite System (GNSS) are well known to be affected by receiver differential code biases (DCBs), which need to be precisely calibrated for pseudo-range-based ionospheric sensing. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs in the context of new-generation GNSS based on Global Positioning System (GPS), BeiDou satellite navigation system (BDS) and Galileo. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs (BR-DCBs) from code measurements collected by a zero-baseline setup. Based on dual frequency measurements collected in 2013 by four receivers, we conclude that the variation of BR-DCBs may be affected by three factors, namely, the version update of the receiver's firmware, the observation conditions caused by the disassembly of individual receivers, and errors in the estimation method.
  • [1]
    章红平, 韩文慧, 黄玲, 等.地基GNSS全球电离层延迟建模[J].武汉大学学报·信息科学版, 2012, 37(10):1186-1189 http://ch.whu.edu.cn/CN/Y2012/V37/I10/1186

    Zhang Hongping, Han Wenhui, Huang Ling, et al. Modelling Ionospheric Delay with IGS Global Ground-Based GNSS Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1186-1189 http://ch.whu.edu.cn/CN/Y2012/V37/I10/1186
    [2]
    Yuan Y B, Ou J K. Differential Areas for Differential Stations (DADS):A New Method of Establi-shing Grid Ionospheric Model[J]. Chinese Science Bulletin, 2002, 47(12):1033-1036 doi: 10.1007/BF02907577
    [3]
    Shi C, Zhao Q, Hu Z, et al. Precise Relative Positioning Using Real Tracking Data from COMPASS GEO and IGSO Satellites[J]. GPS Solutions, 2013, 17(1):103-119 doi: 10.1007/s10291-012-0264-x
    [4]
    Yuan Y B, Ou J K. A Generalized Trigonometric Series Function Model for Determining Ionospheric Delay[J]. Progress in Natural Science, 2004, 14(11):1010-1014 doi: 10.1080/10020070412331344711
    [5]
    Yuan Y B, Ou J K. An Improvement on Ionosph-eric Delay Correction for Single Frequency GPS User-the APR-I Scheme[J]. Journal of Geodesy, 2001, 75(5-6):331-336 doi: 10.1007/s001900100182
    [6]
    Zhang B, Teunissen P J G, Yuan Y, et al. Joint Estimation of Vertical Total Electron Content (VTEC) and Satellite Differential Code Biases (SDCBs) Using Low-Cost Receivers[J]. Journal of Geodesy, 2018, 92(4):401-413 doi: 10.1007/s00190-017-1071-5
    [7]
    Zhang B C, Ou J K, Yuan Y B, et al. Extraction of Line-of-Sight Ionospheric Observables from GPS Data Using Precise Point Positioning[J]. Science China Earth Sciences, 2012, 55(11):1919-1928 doi: 10.1007/s11430-012-4454-8
    [8]
    万卫星, 徐寄遥.中国高层大气与电离层耦合研究进展[J].中国科学:地球科学, 2014, 44(09):1863-1883 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000005685

    Wan Weixing, Xu Jiyao. Recent Investigation on the Coupling Between the Ionosphere and Upper Atmosphere[J].Science China:Earth Sciences, 2014, 44(9):1863-1883 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505130000005685
    [9]
    Yuan Y, Li Z, Wang N, et al. Monitoring the Iono-sphere Based on the Crustal Movement Observation Network of China[J]. Geodesy and Geodynamics, 2015, 6(2):73-80 doi: 10.1016/j.geog.2015.01.004
    [10]
    Komjathy A, Galvan D A, Stephens P, et al. Detecting Ionospheric TEC Perturbations Caused by Natu-ral Hazards Using a Global Network of GPS Recei-vers:The Tohoku Case Study[J]. Earth Planets Space, 2012, 64(12):1287-1294 doi: 10.5047/eps.2012.08.003
    [11]
    Herna Ández-Pajares M, Roma-Dollase D, Krankowski A, et al. Methodology and Consistency of Slant and Vertical Assessments for Ionospheric Electron Content Models[J]. Journal of Geodesy, 2017, 91(12):1405-1414 doi: 10.1007/s00190-017-1032-z
    [12]
    Montenbruck O, Hauschild A, Steigenberger P, et al. Initial Assessment of the COMPASS/BeiDou-2 Regional Navigation Satellite System[J]. GPS Solutions, 2013, 17(2):211-222 doi: 10.1007/s10291-012-0272-x
    [13]
    杨元喜, 李金龙, 王爱兵, 等.北斗区域卫星导航系统基本导航定位性能初步评估[J].中国科学:地球科学, 2014, 44(1):72-81 http://d.old.wanfangdata.com.cn/Periodical/zgsjtx201612079

    Yang Yuanxi, Li Jinlong, Wang Aibing, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System[J].Science China:Earth Sciences, 2014, 44(1):72-81 http://d.old.wanfangdata.com.cn/Periodical/zgsjtx201612079
    [14]
    Tan B, Yuan Y, Zhang B, et al. A New Analytical Solar Radiation Pressure Model for Current BeiDou Satellites:IGGBSPM[J].Scientific Reports, 2016, 6(1):32967 doi: 10.1038/srep32967
    [15]
    唐龙, 张小红.利用北斗GEO卫星观测数据探测中尺度电离层行波扰动[J].武汉大学学报·信息科学版, 2013, 38(12):1409-1412, 1429 http://ch.whu.edu.cn/CN/abstract/abstract2832.shtml

    Tang Long, Zhang Xiaohong. Medium-Scale Traveling Ionospheric Distribances Detection Using Observations of COMPASS GEO Satellite[J].Geoma-tics and Information Science of Wuhan University, 2013, 38(12):1409-1412, 1429 http://ch.whu.edu.cn/CN/abstract/abstract2832.shtml
    [16]
    杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010, 39(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/chxb201001001

    Yang Yuanxi. Progress, Contribution and Challenges of COMPASS/BeiDou Satellite Navigation System[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/chxb201001001
    [17]
    周东旭, 袁运斌, 李子申, 等. GPS接收机仪器偏差的长期变化特性分析[J].大地测量与地球动力学, 2011, 31(5):114-118 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201105025

    Zhou Dongxu, Yuan Yunbin, Li Zishen, et al. Analysis of Long-Term Variations of GPS Receivers'Differential Code Bias[J]. Journal of Geodesy and Geodynamics, 2011, 31(5):114-118 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201105025
    [18]
    Yuan Y, Tscherning C C, Knudsen P, et al. The Io-nospheric Eclipse Factor Method (IEFM) and Its Application to Determining the Ionospheric Delay for GPS[J]. Journal of Geodesy, 2008, 82(1):1-8 doi: 10.1007/s00190-007-0152-2
    [19]
    Li M, Yuan Y, Wang N, et al. Estimation and Analysis of Galileo Differential Code Biases[J]. Journal of Geodesy, 2017, 91(3):279-293 doi: 10.1007/s00190-016-0962-1
    [20]
    Wang N, Yuan Y, Li Z, et al. Determination of Differential Code Biases with Multi-GNSS Observations[J]. Journal of Geodesy, 2016, 90(3):209-228 doi: 10.1007/s00190-015-0867-4
    [21]
    Montenbruck O, Hauschild A, Steigenberger P. Differential Code Bias Estimation Using Multi-GNSS Observations and Global Ionosphere Maps[J]. Navigation, 2014, 61(3):191-201 doi: 10.1002/navi.64/pdf
    [22]
    Ciraolo L, Azpilicueta F, Brunini C, et al. Calibration Errors on Experimental Slant Total Electron Content (TEC) Determined with GPS[J]. Journal of Geodesy, 2007, 81(2):111-120 doi: 10.1007/s00190-006-0093-1
    [23]
    Coster A, Williams J, Weatherwax A, et al. Accuracy of GPS Total Electron Content:GPS Receiver Bias Temperature Dependence[J]. Radio Science, 2013, 48(2):190-196 doi: 10.1002/rds.v48.2
    [24]
    Brunini C, Azpilicueta F. Accuracy Assessment of the GPS-Based Slant Total Electron Content[J]. Journal of Geodesy, 2009, 83(8):773-785 doi: 10.1007/s00190-008-0296-8
    [25]
    Zhang B C, Teunissen P J G. Characterization of Multi-GNSS Between-Receiver Differential Code Bia-ses Using Zero and Short Baselines[J]. Science Bulletin, 2015, 60(21):1840-1849 doi: 10.1007/S11434-015-0911-Z
    [26]
    Zhang B, Teunissen P J G. Zero-Baseline Analysis of GPS/BeiDou/Galileo Between-Receiver Differential Code Biases (BR-DCBs):Time-Wise Retrieval and Preliminary Characterization[J]. Navigation, 2016, 63(2):181-191 doi: 10.1002/navi.132/pdf
    [27]
    Brunini C, Azpilicueta F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Different Geomagnetic Regions and Ionospheric Conditions[J]. Journal of Geodesy, 2010, 84(5):293-304 doi: 10.1007/s00190-010-0367-5
    [28]
    Conte J F, Azpilicueta F, Brunini C. Accuracy Assessment of the GPS-TEC Calibration Constants by Means of a Simulation Technique[J]. Journal of Geodesy, 2011, 85(10):707-714 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b8e13cd9d1dbbf51cfec4cf797710fe
    [29]
    Zhang B, Yuan Y, Ou J. Short-Term Temporal Variability of GPS Receiver's Differential Code Biases (DCB):Retrieving and Modeling[J]. Chinese Journal Geophysics, 2016, 59(1):101-115 http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201601009.htm
    [30]
    Zhang D H, Zhang W, Li Q, et al. Accuracy Analy-sis of the GPS Instrumental Bias Estimated from Observations in Middle and Low Latitudes[J]. Ann Geophys, 2010, 28(8):1571-1580 doi: 10.5194/angeo-28-1571-2010
    [31]
    Li Z, Yuan Y, Li H, et al. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11):1059-1076 doi: 10.1007/s00190-012-0565-4
    [32]
    Li Z, Yuan Y, Fan L, et al. Determination of the Differential Code Bias for Current BDS Satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3968-3979 doi: 10.1109/TGRS.2013.2278545
    [33]
    Teunissen P J G, Odolinski R, Odijk D. Instantaneous BeiDou+ GPS RTK Positioning with High Cut-Off Elevation Angles[J]. Journal of Geodesy, 2014, 88(4):335-350 doi: 10.1007/s00190-013-0686-4
    [34]
    Odolinski R, Teunissen P J G, Odijk D. Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK[J].GPS Solutions, 2015, 19(1):151-163 doi: 10.1007/s10291-014-0376-6
    [35]
    Böhm J, Möller G, Schindelegger M, et al. Develop-ment of An Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441 doi: 10.1007/s10291-014-0403-7
    [36]
    Li M, Qu L, Zhao Q, et al. Precise Point Positio-ning with the BeiDou Navigation Satellite System[J]. Sensors, 2014, 14(1):927-943 doi: 10.3390/s140100927
    [37]
    Shi C, Yi W, Song W, et al. GLONASS Pseudo-range Inter-Channel Biases and Their Effects on Combined GPS/GLONASS Precise Point Positioning[J]. GPS Solutions, 2013, 17(4):439-451 doi: 10.1007/s10291-013-0332-x
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (1606) PDF downloads (291) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return