Citation: | LI Shuiping, CHEN Gang, HE Ping, DING Kaihua, CHEN Yunguo, WANG Qi. Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1787-1796. DOI: 10.13203/j.whugis20180128 |
[1] |
Bai L, Liu H, Ritsema J, et al. Faulting Structure Above the Main Himalayan Thrust as Shown by Relocated Aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2016, 43(2): 637-642 doi: 10.1002/2015GL066473
|
[2] |
腾吉文, 张中杰, 王光杰, 等.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型[J].地球物理学报, 1999, 42(4):481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007
Teng Jiwen, Zhang Zhongjie, Wang Guangjie, et al. The Deep Internal Dynamical Processes and New Model of Continental-Continental Collision in Himalayan Collision Orogenic Zone[J]. Chinese Journal of Geophysics, 1999, 42(4): 481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007
|
[3] |
Wang Q, Zhang P, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5 542): 574-577 doi: 10.1126-science.1063647/
|
[4] |
Bilham R, Ambraseys N. Apparent Himalayan Slip Deficit from the Summation of Seismic Moments for Himalayan Earthquake, 1500—2000[J]. Current Science, 2005, 88(10):1 658-1 663
|
[5] |
Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal[J]. Science, 2015, 349 (6 252): 1 091-1 095 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f89c774aad7ea24c53c0cd555f9c3c9
|
[6] |
Lindsey E O, Natsuaki R, Xu X, et al. Line of Sight Displacement from ALOS-2 Interferometry Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42: 6 655-6 661 doi: 10.1002/2015GL065385
|
[7] |
屈春燕, 左荣虎, 单新建, 等.尼泊尔Ms 8.1地震InSAR同震形变场及断层滑动分布[J].地球物理学报, 2017, 60(1):151-162
Qu Chunyan, Zuo Ronghu, Shan Xinjian, et al. Coseismic Deformation Field of the Nepal Ms 8.1 Earthquake from Sentinel-1A/InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(1): 151-162
|
[8] |
单新建, 张国宏, 汪驰升, 等.基于InSAR和GPS观测数据的尼泊尔地震发震断层特征参数联合反演研究[J].地球物理学报, 2015, 58(11):4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032
Shan Xinjian, Zhang Guohong, Wang Chisheng, et al. Joint Inversion for the Spatial Fault Slip Distribution of the 2015 Nepal Earthquake Based on InSAR and GPS Observations[J]. Chinese Journal of Geophysics, 2015, 58(11): 4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032
|
[9] |
Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2):896-900 doi: 10.1093/gji/ggv335
|
[10] |
Feng W P, Lindsey E, Barbot S, et al. Source Characteristics of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake and Its Mw 7.2 Aftershock from Space Geodesy[J]. Tectonophysics, 2016, 712: 747-758
|
[11] |
谭凯, 赵斌, 张彩红, 等. GPS和InSAR同震形变约束的尼泊尔Mw 7.9和Mw 7.3地震破裂滑动分布[J].地球物理学报, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014
Tan Kai, Zhao Bin, Zhang Caihong, et al. Rupture Models of the Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by GPS and InSAR Coseismic Deformations[J]. Chinese Journal of Geophysics, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014
|
[12] |
Elliott J R, Jolivet R, González P J, et al. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(2): 174-180 doi: 10.1038/ngeo2623
|
[13] |
Avouac J P, Meng L, Wei S, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J]. Nature Geoscience, 2015, 8(9): 708-711 doi: 10.1038/ngeo2518
|
[14] |
Grandin R, Vallee M, Satriano C, et al. Rupture Process of the Mw=7.9 Gorkha Earthquake(Nepal): Insights into Himalaya Megathrust Segmentation[J]. Geophysical Research Letters, 2015, 42: 8 373-8 382 doi: 10.1002/2015GL066044
|
[15] |
Liu C L, Zheng Y, Wang R J, et al. Rupture Processes of the 2015 Mw 7.9 Gorkha Earthquake and Its Mw 7.3 Aftershock and Their Implications on the Seismic Risk[J]. Tectonophysics, 2016, 682: 264-277 doi: 10.1016/j.tecto.2016.05.034
|
[16] |
Wei S, Meng C, Xin W, et al. The 2015 Gorkha (Nepal) Earthquake Sequence: I. Source Modeling and Deterministic 3D Ground Shaking[J]. Tectonophysics, 2017, 722: 447-461
|
[17] |
Yagi Y, Okuwaki R. Integrated Seismic Source Model of the 2015 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2015, 42(15): 6 229-6 235 doi: 10.1002/2015GL064995
|
[18] |
Sreejith K M, Sunil P S, Agrawal R, et al. Coseismic and Early Postseismic Deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2016, 43(7):3 160-3 168 doi: 10.1002/2016GL067907
|
[19] |
Mencin D, Bendick R, Upreti B N, et al. Himalayan Strain Reservoir Inferred from Limited Afterslip Following the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(7): 533-537 doi: 10.1038/ngeo2734
|
[20] |
Gualandi A, Avouac J P, Galetzka J, et al. Pre- and Post-seismic Deformation Related to the 2015, Mw 7.8 Gorkha Earthquake, Nepal[J]. Tectonophysics, 2016, 714-715: 90-106 https://www.researchgate.net/publication/304336567_Pre-_and_post-seismic_deformation_related_to_the_2015_Mw78_Gorkha_earthquake_Nepal
|
[21] |
Jiang Z, Yuan L, Huang D, et al. Postseismic Deformation Associated with the 2015 Mw 7.8 Gorkha Earthquake, Nepal: Investigating Ongoing Afterslip and Constraining Crustal Rheology[J]. Journal of Asian Earth Sciences, 2018, 156:1-10 doi: 10.1016/j.jseaes.2017.12.039
|
[22] |
Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Down-Dip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8 376-8 401 doi: 10.1002/2017JB014366
|
[23] |
Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
|
[24] |
Meade B J. Algorithms for the Calculation of Exact Displacements, Strains, and Stresses for Triangular Dislocation Elements in a Uniform Elastic Half Space[J]. Computers & Geosciences, 2007, 33(8): 1 064-1 075 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5625e0487da662e39dc039c709786105
|
[25] |
赵斌, 杜瑞林, 张锐, 等. GPS测定的尼泊尔Mw 7.9和Mw 7.3级地震同震形变场[J].科学通报, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008
Zhao Bin, Du Ruilin, Zhang Rui, et al. Co-seismic Displacements Associated with the 2015 Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by Global Positioning System Measurements[J]. Chinese Science Bulletin, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008
|
[26] |
Fu Y N, Freymueller J T. Seasonal and Long-term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J]. Journal of Geophysical Research: Solid Earth, 2012, doi: 10.1029/2011JB008925
|
[27] |
Sandwell D, Mellors R, Tong X, et al. Open Radar Interferometry Software for Mapping Surface Deformation[J]. Eos Transactions American Geophysical Union, 2011, 92(28): 234 doi: 10.1029/2011EO280002
|
[28] |
许才军, 何平, 温扬茂, 等.日本2011Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J].武汉大学学报·信息科学版, 2012, 37(12):1 387-1 391
Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1 387-1 391
|
[29] |
Yin Z, Xu C J, Wen Y M, et al. A New Hybrid Inversion Method for Parametric Curved Faults and Its Application to the 2008 Wenchuan (China) Earthquake[J]. Geophysical Journal International, 2016, 205(2): 954-970 doi: 10.1093/gji/ggw060
|
[30] |
Maerten F, Resor P, Pollard D, et al. Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1 654-1 665 doi: 10.1785/0120030181
|
[31] |
Hayes G P, Briggs R W, Barnhart W D, et al. Rapid Characterization of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Sequence and Its Seismotectonic Context[J]. Seismological Research Letters, 2015, 86(6): 1 557-1 567 doi: 10.1785/0220150145
|
[32] |
赵静, 江在森, 牛安福, 等.喜马拉雅主逆冲断层闭锁程度与滑动亏损特征研究[J].武汉大学学报·信息科学版, 2017, 42(12): 1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012
Zhao Jing, Jiang Zaisen, Niu Anfu, et al. Characteristics of Fault Locking and Fault Slip Deficit in the Main Himalayan Thrust Fault[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012
|
[33] |
Stevens V L, Avouac J P. Interseismic Coupling on the Main Himalayan Thrust[J]. Geophysical Research Letters, 2015, 42(14): 5 828-5 837 doi: 10.1002/2015GL064845
|
[34] |
Kumar A, Singh S K, Mitra S, et al. The 2015 April 25 Gorkha (Nepal) Earthquake and Its Aftershocks: Implications for Lateral Heterogeneity on the Main Himalayan Thrust[J]. Geophysical Journal International, 2017, 208(2): 992-100 doi: 10.1093/gji/ggw438
|
[1] | WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038 |
[2] | ZHENG Nanshan, FENG Qiulin, LIU Chen, ZHOU Xiaomin. Relationship Analysis Between GPS Reflection Signal SNR and NDVI[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1423-1429. DOI: 10.13203/j.whugis20180046 |
[3] | ZHANG Guofeng, YANG Lirong. Assessing the Local Uncertainty of Precipitation with Copulas[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 805-809. DOI: 10.13203/j.whugis20130497 |
[4] | GAN Wenxia, SHEN Huanfeng, ZHANG Liangpei, GONG Wei. Normalization of Multi-temporal MODIS NDVI Based on6SRadiative Transfer Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 300-304. DOI: 10.13203/j.whugis20120731 |
[5] | HAN Ping, WANG Pengxin, ZHANG Shuyu, ZHU Dehai. Drought Forecasting with Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1202-1206. |
[6] | LIU Liangming, XIANG Daxiang, WEN Xiongfei, YANG Na. Improvement of Cloud Parameters Based Drought Monitoring Model Using Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 207-209. |
[7] | SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576. |
[8] | WANG Zhengxing, LIU Chuang, CHEN Wenbo, LIN Xin. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 407-410. |
[9] | LIU Liangming, LIANG Yitong, MA Huiyun, HUANG Jing. Relationship Research Between MODIS-NDVI and AVHRR-NDVI[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 307-310. |
[10] | WANG Pengxin, GONG Jianya, LI Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418. |