LI Shuiping, CHEN Gang, HE Ping, DING Kaihua, CHEN Yunguo, WANG Qi. Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1787-1796. DOI: 10.13203/j.whugis20180128
Citation: LI Shuiping, CHEN Gang, HE Ping, DING Kaihua, CHEN Yunguo, WANG Qi. Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1787-1796. DOI: 10.13203/j.whugis20180128

Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations

Funds: 

The National Natural Science Foundation of China 41674015

The National Natural Science Foundation of China 41574012

The National Natural Science Foundation of China 41674017

China Postdoctoral Science Foundation 2015M572218

the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan SMIL-2015-01

the Fundamental Research Funds for the Central Universities CUGL150810

More Information
  • Author Bio:

    LI Shuiping, PhD candidate, specializes in space geodesy research. E-mail:cug_lsp@foxmail.com

  • Corresponding author:

    CHEN Gang, PhD, professor. E-mail: ddwhcg@cug.edu.cn

  • Received Date: August 15, 2018
  • Published Date: December 04, 2019
  • The 2015 Nepal Mw 7.9 earthquake occurred in the central segment of the Himalayan collision zone where the rigid Indian plate is underthrusted beneath the Tibetan Plateau. Refining the coseismic slip distribution and afterslip of the earthquake has great significance for better understanding the seismogenic mechanism in Himalaya orogenic belt. We adopted the angular dislocation elements to construct the rampflat-ramp-flat fault geometry of the main Himalayan thrust. In combining with GPS and InSAR data, we inverted the coseismic slip distribution and afterslip of the Nepal earthquake. The result shows that the mainshock is dominated by thrust slip with minor right-lateral strike-slip. The maximum slip of the mainshock is up to 7.8 m at a depth of 15 km, near to the intersection between the upper flat and mid-crust ramp. The total geodetic moment based on our preferred slip model is M0=8.39×1020 N·m, corresponding to an Mw of 7.93 assuming a shear modulus of 30 GPa. The released moment is mainly confined to the depth of 15-25 km, in which nearly 50% of the released moment locates at the ramp of upper crust. The maximum slip could be underestimated if we ignore the mid-crust ramp. The inferred afterslip primarily concentrates on the downdip of the coseismic rupture. The afterslip is characterized by pure thrust slip with the maximal amplitude of 0.5 m. The total released moment by the afterslip is estimated to be 1.02×1020 N·m, equivalent to an Mw 7.3 earthquake, approximately 12% of the coseismic moment. The coseismic static Coulomb stress change suggests that the southern part to the rupture zone of the Nepal earthquake with a width of about 60 km is largely promoted by the 2015 Nepal earthquake. Considering the fact that this area is strongly locked during the interseismic period, the near-term seismic hazard in this area deserves special attention.
  • [1]
    Bai L, Liu H, Ritsema J, et al. Faulting Structure Above the Main Himalayan Thrust as Shown by Relocated Aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2016, 43(2): 637-642 doi: 10.1002/2015GL066473
    [2]
    腾吉文, 张中杰, 王光杰, 等.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型[J].地球物理学报, 1999, 42(4):481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007

    Teng Jiwen, Zhang Zhongjie, Wang Guangjie, et al. The Deep Internal Dynamical Processes and New Model of Continental-Continental Collision in Himalayan Collision Orogenic Zone[J]. Chinese Journal of Geophysics, 1999, 42(4): 481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007
    [3]
    Wang Q, Zhang P, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5 542): 574-577 doi: 10.1126-science.1063647/
    [4]
    Bilham R, Ambraseys N. Apparent Himalayan Slip Deficit from the Summation of Seismic Moments for Himalayan Earthquake, 1500—2000[J]. Current Science, 2005, 88(10):1 658-1 663
    [5]
    Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal[J]. Science, 2015, 349 (6 252): 1 091-1 095 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f89c774aad7ea24c53c0cd555f9c3c9
    [6]
    Lindsey E O, Natsuaki R, Xu X, et al. Line of Sight Displacement from ALOS-2 Interferometry Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42: 6 655-6 661 doi: 10.1002/2015GL065385
    [7]
    屈春燕, 左荣虎, 单新建, 等.尼泊尔Ms 8.1地震InSAR同震形变场及断层滑动分布[J].地球物理学报, 2017, 60(1):151-162

    Qu Chunyan, Zuo Ronghu, Shan Xinjian, et al. Coseismic Deformation Field of the Nepal Ms 8.1 Earthquake from Sentinel-1A/InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(1): 151-162
    [8]
    单新建, 张国宏, 汪驰升, 等.基于InSAR和GPS观测数据的尼泊尔地震发震断层特征参数联合反演研究[J].地球物理学报, 2015, 58(11):4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032

    Shan Xinjian, Zhang Guohong, Wang Chisheng, et al. Joint Inversion for the Spatial Fault Slip Distribution of the 2015 Nepal Earthquake Based on InSAR and GPS Observations[J]. Chinese Journal of Geophysics, 2015, 58(11): 4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032
    [9]
    Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2):896-900 doi: 10.1093/gji/ggv335
    [10]
    Feng W P, Lindsey E, Barbot S, et al. Source Characteristics of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake and Its Mw 7.2 Aftershock from Space Geodesy[J]. Tectonophysics, 2016, 712: 747-758
    [11]
    谭凯, 赵斌, 张彩红, 等. GPS和InSAR同震形变约束的尼泊尔Mw 7.9和Mw 7.3地震破裂滑动分布[J].地球物理学报, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014

    Tan Kai, Zhao Bin, Zhang Caihong, et al. Rupture Models of the Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by GPS and InSAR Coseismic Deformations[J]. Chinese Journal of Geophysics, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014
    [12]
    Elliott J R, Jolivet R, González P J, et al. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(2): 174-180 doi: 10.1038/ngeo2623
    [13]
    Avouac J P, Meng L, Wei S, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J]. Nature Geoscience, 2015, 8(9): 708-711 doi: 10.1038/ngeo2518
    [14]
    Grandin R, Vallee M, Satriano C, et al. Rupture Process of the Mw=7.9 Gorkha Earthquake(Nepal): Insights into Himalaya Megathrust Segmentation[J]. Geophysical Research Letters, 2015, 42: 8 373-8 382 doi: 10.1002/2015GL066044
    [15]
    Liu C L, Zheng Y, Wang R J, et al. Rupture Processes of the 2015 Mw 7.9 Gorkha Earthquake and Its Mw 7.3 Aftershock and Their Implications on the Seismic Risk[J]. Tectonophysics, 2016, 682: 264-277 doi: 10.1016/j.tecto.2016.05.034
    [16]
    Wei S, Meng C, Xin W, et al. The 2015 Gorkha (Nepal) Earthquake Sequence: I. Source Modeling and Deterministic 3D Ground Shaking[J]. Tectonophysics, 2017, 722: 447-461
    [17]
    Yagi Y, Okuwaki R. Integrated Seismic Source Model of the 2015 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2015, 42(15): 6 229-6 235 doi: 10.1002/2015GL064995
    [18]
    Sreejith K M, Sunil P S, Agrawal R, et al. Coseismic and Early Postseismic Deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2016, 43(7):3 160-3 168 doi: 10.1002/2016GL067907
    [19]
    Mencin D, Bendick R, Upreti B N, et al. Himalayan Strain Reservoir Inferred from Limited Afterslip Following the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(7): 533-537 doi: 10.1038/ngeo2734
    [20]
    Gualandi A, Avouac J P, Galetzka J, et al. Pre- and Post-seismic Deformation Related to the 2015, Mw 7.8 Gorkha Earthquake, Nepal[J]. Tectonophysics, 2016, 714-715: 90-106 https://www.researchgate.net/publication/304336567_Pre-_and_post-seismic_deformation_related_to_the_2015_Mw78_Gorkha_earthquake_Nepal
    [21]
    Jiang Z, Yuan L, Huang D, et al. Postseismic Deformation Associated with the 2015 Mw 7.8 Gorkha Earthquake, Nepal: Investigating Ongoing Afterslip and Constraining Crustal Rheology[J]. Journal of Asian Earth Sciences, 2018, 156:1-10 doi: 10.1016/j.jseaes.2017.12.039
    [22]
    Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Down-Dip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8 376-8 401 doi: 10.1002/2017JB014366
    [23]
    Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
    [24]
    Meade B J. Algorithms for the Calculation of Exact Displacements, Strains, and Stresses for Triangular Dislocation Elements in a Uniform Elastic Half Space[J]. Computers & Geosciences, 2007, 33(8): 1 064-1 075 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5625e0487da662e39dc039c709786105
    [25]
    赵斌, 杜瑞林, 张锐, 等. GPS测定的尼泊尔Mw 7.9和Mw 7.3级地震同震形变场[J].科学通报, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008

    Zhao Bin, Du Ruilin, Zhang Rui, et al. Co-seismic Displacements Associated with the 2015 Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by Global Positioning System Measurements[J]. Chinese Science Bulletin, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008
    [26]
    Fu Y N, Freymueller J T. Seasonal and Long-term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J]. Journal of Geophysical Research: Solid Earth, 2012, doi: 10.1029/2011JB008925
    [27]
    Sandwell D, Mellors R, Tong X, et al. Open Radar Interferometry Software for Mapping Surface Deformation[J]. Eos Transactions American Geophysical Union, 2011, 92(28): 234 doi: 10.1029/2011EO280002
    [28]
    许才军, 何平, 温扬茂, 等.日本2011Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J].武汉大学学报·信息科学版, 2012, 37(12):1 387-1 391

    Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1 387-1 391
    [29]
    Yin Z, Xu C J, Wen Y M, et al. A New Hybrid Inversion Method for Parametric Curved Faults and Its Application to the 2008 Wenchuan (China) Earthquake[J]. Geophysical Journal International, 2016, 205(2): 954-970 doi: 10.1093/gji/ggw060
    [30]
    Maerten F, Resor P, Pollard D, et al. Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1 654-1 665 doi: 10.1785/0120030181
    [31]
    Hayes G P, Briggs R W, Barnhart W D, et al. Rapid Characterization of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Sequence and Its Seismotectonic Context[J]. Seismological Research Letters, 2015, 86(6): 1 557-1 567 doi: 10.1785/0220150145
    [32]
    赵静, 江在森, 牛安福, 等.喜马拉雅主逆冲断层闭锁程度与滑动亏损特征研究[J].武汉大学学报·信息科学版, 2017, 42(12): 1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012

    Zhao Jing, Jiang Zaisen, Niu Anfu, et al. Characteristics of Fault Locking and Fault Slip Deficit in the Main Himalayan Thrust Fault[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012
    [33]
    Stevens V L, Avouac J P. Interseismic Coupling on the Main Himalayan Thrust[J]. Geophysical Research Letters, 2015, 42(14): 5 828-5 837 doi: 10.1002/2015GL064845
    [34]
    Kumar A, Singh S K, Mitra S, et al. The 2015 April 25 Gorkha (Nepal) Earthquake and Its Aftershocks: Implications for Lateral Heterogeneity on the Main Himalayan Thrust[J]. Geophysical Journal International, 2017, 208(2): 992-100 doi: 10.1093/gji/ggw438
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views (1155) PDF downloads (153) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return