LI Shuiping, CHEN Gang, HE Ping, DING Kaihua, CHEN Yunguo, WANG Qi. Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1787-1796. DOI: 10.13203/j.whugis20180128
Citation: LI Shuiping, CHEN Gang, HE Ping, DING Kaihua, CHEN Yunguo, WANG Qi. Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1787-1796. DOI: 10.13203/j.whugis20180128

Inversion for Coseismic Slip Distribution and Afterslip of the 2015 Nepal Mw 7.9 Earthquake Using Angular Dislocations

Funds: 

The National Natural Science Foundation of China 41674015

The National Natural Science Foundation of China 41574012

The National Natural Science Foundation of China 41674017

China Postdoctoral Science Foundation 2015M572218

the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan SMIL-2015-01

the Fundamental Research Funds for the Central Universities CUGL150810

More Information
  • Author Bio:

    LI Shuiping, PhD candidate, specializes in space geodesy research. E-mail:cug_lsp@foxmail.com

  • Corresponding author:

    CHEN Gang, PhD, professor. E-mail: ddwhcg@cug.edu.cn

  • Received Date: August 15, 2018
  • Published Date: December 04, 2019
  • The 2015 Nepal Mw 7.9 earthquake occurred in the central segment of the Himalayan collision zone where the rigid Indian plate is underthrusted beneath the Tibetan Plateau. Refining the coseismic slip distribution and afterslip of the earthquake has great significance for better understanding the seismogenic mechanism in Himalaya orogenic belt. We adopted the angular dislocation elements to construct the rampflat-ramp-flat fault geometry of the main Himalayan thrust. In combining with GPS and InSAR data, we inverted the coseismic slip distribution and afterslip of the Nepal earthquake. The result shows that the mainshock is dominated by thrust slip with minor right-lateral strike-slip. The maximum slip of the mainshock is up to 7.8 m at a depth of 15 km, near to the intersection between the upper flat and mid-crust ramp. The total geodetic moment based on our preferred slip model is M0=8.39×1020 N·m, corresponding to an Mw of 7.93 assuming a shear modulus of 30 GPa. The released moment is mainly confined to the depth of 15-25 km, in which nearly 50% of the released moment locates at the ramp of upper crust. The maximum slip could be underestimated if we ignore the mid-crust ramp. The inferred afterslip primarily concentrates on the downdip of the coseismic rupture. The afterslip is characterized by pure thrust slip with the maximal amplitude of 0.5 m. The total released moment by the afterslip is estimated to be 1.02×1020 N·m, equivalent to an Mw 7.3 earthquake, approximately 12% of the coseismic moment. The coseismic static Coulomb stress change suggests that the southern part to the rupture zone of the Nepal earthquake with a width of about 60 km is largely promoted by the 2015 Nepal earthquake. Considering the fact that this area is strongly locked during the interseismic period, the near-term seismic hazard in this area deserves special attention.
  • [1]
    Bai L, Liu H, Ritsema J, et al. Faulting Structure Above the Main Himalayan Thrust as Shown by Relocated Aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2016, 43(2): 637-642 doi: 10.1002/2015GL066473
    [2]
    腾吉文, 张中杰, 王光杰, 等.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型[J].地球物理学报, 1999, 42(4):481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007

    Teng Jiwen, Zhang Zhongjie, Wang Guangjie, et al. The Deep Internal Dynamical Processes and New Model of Continental-Continental Collision in Himalayan Collision Orogenic Zone[J]. Chinese Journal of Geophysics, 1999, 42(4): 481-494 doi: 10.3321/j.issn:0001-5733.1999.04.007
    [3]
    Wang Q, Zhang P, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5 542): 574-577 doi: 10.1126-science.1063647/
    [4]
    Bilham R, Ambraseys N. Apparent Himalayan Slip Deficit from the Summation of Seismic Moments for Himalayan Earthquake, 1500—2000[J]. Current Science, 2005, 88(10):1 658-1 663
    [5]
    Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal[J]. Science, 2015, 349 (6 252): 1 091-1 095 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f89c774aad7ea24c53c0cd555f9c3c9
    [6]
    Lindsey E O, Natsuaki R, Xu X, et al. Line of Sight Displacement from ALOS-2 Interferometry Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42: 6 655-6 661 doi: 10.1002/2015GL065385
    [7]
    屈春燕, 左荣虎, 单新建, 等.尼泊尔Ms 8.1地震InSAR同震形变场及断层滑动分布[J].地球物理学报, 2017, 60(1):151-162

    Qu Chunyan, Zuo Ronghu, Shan Xinjian, et al. Coseismic Deformation Field of the Nepal Ms 8.1 Earthquake from Sentinel-1A/InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(1): 151-162
    [8]
    单新建, 张国宏, 汪驰升, 等.基于InSAR和GPS观测数据的尼泊尔地震发震断层特征参数联合反演研究[J].地球物理学报, 2015, 58(11):4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032

    Shan Xinjian, Zhang Guohong, Wang Chisheng, et al. Joint Inversion for the Spatial Fault Slip Distribution of the 2015 Nepal Earthquake Based on InSAR and GPS Observations[J]. Chinese Journal of Geophysics, 2015, 58(11): 4 266-4 276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201511032
    [9]
    Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2):896-900 doi: 10.1093/gji/ggv335
    [10]
    Feng W P, Lindsey E, Barbot S, et al. Source Characteristics of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake and Its Mw 7.2 Aftershock from Space Geodesy[J]. Tectonophysics, 2016, 712: 747-758
    [11]
    谭凯, 赵斌, 张彩红, 等. GPS和InSAR同震形变约束的尼泊尔Mw 7.9和Mw 7.3地震破裂滑动分布[J].地球物理学报, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014

    Tan Kai, Zhao Bin, Zhang Caihong, et al. Rupture Models of the Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by GPS and InSAR Coseismic Deformations[J]. Chinese Journal of Geophysics, 2016, 59(6): 2 080-2 093 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201606014
    [12]
    Elliott J R, Jolivet R, González P J, et al. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(2): 174-180 doi: 10.1038/ngeo2623
    [13]
    Avouac J P, Meng L, Wei S, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J]. Nature Geoscience, 2015, 8(9): 708-711 doi: 10.1038/ngeo2518
    [14]
    Grandin R, Vallee M, Satriano C, et al. Rupture Process of the Mw=7.9 Gorkha Earthquake(Nepal): Insights into Himalaya Megathrust Segmentation[J]. Geophysical Research Letters, 2015, 42: 8 373-8 382 doi: 10.1002/2015GL066044
    [15]
    Liu C L, Zheng Y, Wang R J, et al. Rupture Processes of the 2015 Mw 7.9 Gorkha Earthquake and Its Mw 7.3 Aftershock and Their Implications on the Seismic Risk[J]. Tectonophysics, 2016, 682: 264-277 doi: 10.1016/j.tecto.2016.05.034
    [16]
    Wei S, Meng C, Xin W, et al. The 2015 Gorkha (Nepal) Earthquake Sequence: I. Source Modeling and Deterministic 3D Ground Shaking[J]. Tectonophysics, 2017, 722: 447-461
    [17]
    Yagi Y, Okuwaki R. Integrated Seismic Source Model of the 2015 Gorkha, Nepal, Earthquake[J]. Geophysical Research Letters, 2015, 42(15): 6 229-6 235 doi: 10.1002/2015GL064995
    [18]
    Sreejith K M, Sunil P S, Agrawal R, et al. Coseismic and Early Postseismic Deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2016, 43(7):3 160-3 168 doi: 10.1002/2016GL067907
    [19]
    Mencin D, Bendick R, Upreti B N, et al. Himalayan Strain Reservoir Inferred from Limited Afterslip Following the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(7): 533-537 doi: 10.1038/ngeo2734
    [20]
    Gualandi A, Avouac J P, Galetzka J, et al. Pre- and Post-seismic Deformation Related to the 2015, Mw 7.8 Gorkha Earthquake, Nepal[J]. Tectonophysics, 2016, 714-715: 90-106 https://www.researchgate.net/publication/304336567_Pre-_and_post-seismic_deformation_related_to_the_2015_Mw78_Gorkha_earthquake_Nepal
    [21]
    Jiang Z, Yuan L, Huang D, et al. Postseismic Deformation Associated with the 2015 Mw 7.8 Gorkha Earthquake, Nepal: Investigating Ongoing Afterslip and Constraining Crustal Rheology[J]. Journal of Asian Earth Sciences, 2018, 156:1-10 doi: 10.1016/j.jseaes.2017.12.039
    [22]
    Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Down-Dip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8 376-8 401 doi: 10.1002/2017JB014366
    [23]
    Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
    [24]
    Meade B J. Algorithms for the Calculation of Exact Displacements, Strains, and Stresses for Triangular Dislocation Elements in a Uniform Elastic Half Space[J]. Computers & Geosciences, 2007, 33(8): 1 064-1 075 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5625e0487da662e39dc039c709786105
    [25]
    赵斌, 杜瑞林, 张锐, 等. GPS测定的尼泊尔Mw 7.9和Mw 7.3级地震同震形变场[J].科学通报, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008

    Zhao Bin, Du Ruilin, Zhang Rui, et al. Co-seismic Displacements Associated with the 2015 Nepal Mw 7.9 Earthquake and Mw 7.3 Aftershock Constrained by Global Positioning System Measurements[J]. Chinese Science Bulletin, 2015, 60(28-29): 2 758-2 764 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201528008
    [26]
    Fu Y N, Freymueller J T. Seasonal and Long-term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J]. Journal of Geophysical Research: Solid Earth, 2012, doi: 10.1029/2011JB008925
    [27]
    Sandwell D, Mellors R, Tong X, et al. Open Radar Interferometry Software for Mapping Surface Deformation[J]. Eos Transactions American Geophysical Union, 2011, 92(28): 234 doi: 10.1029/2011EO280002
    [28]
    许才军, 何平, 温扬茂, 等.日本2011Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J].武汉大学学报·信息科学版, 2012, 37(12):1 387-1 391

    Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1 387-1 391
    [29]
    Yin Z, Xu C J, Wen Y M, et al. A New Hybrid Inversion Method for Parametric Curved Faults and Its Application to the 2008 Wenchuan (China) Earthquake[J]. Geophysical Journal International, 2016, 205(2): 954-970 doi: 10.1093/gji/ggw060
    [30]
    Maerten F, Resor P, Pollard D, et al. Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1 654-1 665 doi: 10.1785/0120030181
    [31]
    Hayes G P, Briggs R W, Barnhart W D, et al. Rapid Characterization of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Sequence and Its Seismotectonic Context[J]. Seismological Research Letters, 2015, 86(6): 1 557-1 567 doi: 10.1785/0220150145
    [32]
    赵静, 江在森, 牛安福, 等.喜马拉雅主逆冲断层闭锁程度与滑动亏损特征研究[J].武汉大学学报·信息科学版, 2017, 42(12): 1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012

    Zhao Jing, Jiang Zaisen, Niu Anfu, et al. Characteristics of Fault Locking and Fault Slip Deficit in the Main Himalayan Thrust Fault[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 756-1 764 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201712012
    [33]
    Stevens V L, Avouac J P. Interseismic Coupling on the Main Himalayan Thrust[J]. Geophysical Research Letters, 2015, 42(14): 5 828-5 837 doi: 10.1002/2015GL064845
    [34]
    Kumar A, Singh S K, Mitra S, et al. The 2015 April 25 Gorkha (Nepal) Earthquake and Its Aftershocks: Implications for Lateral Heterogeneity on the Main Himalayan Thrust[J]. Geophysical Journal International, 2017, 208(2): 992-100 doi: 10.1093/gji/ggw438
  • Related Articles

    [1]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [2]ZHENG Nanshan, FENG Qiulin, LIU Chen, ZHOU Xiaomin. Relationship Analysis Between GPS Reflection Signal SNR and NDVI[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1423-1429. DOI: 10.13203/j.whugis20180046
    [3]ZHANG Guofeng, YANG Lirong. Assessing the Local Uncertainty of Precipitation with Copulas[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 805-809. DOI: 10.13203/j.whugis20130497
    [4]GAN Wenxia, SHEN Huanfeng, ZHANG Liangpei, GONG Wei. Normalization of Multi-temporal MODIS NDVI Based on6SRadiative Transfer Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 300-304. DOI: 10.13203/j.whugis20120731
    [5]HAN Ping, WANG Pengxin, ZHANG Shuyu, ZHU Dehai. Drought Forecasting with Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1202-1206.
    [6]LIU Liangming, XIANG Daxiang, WEN Xiongfei, YANG Na. Improvement of Cloud Parameters Based Drought Monitoring Model Using Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 207-209.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]WANG Zhengxing, LIU Chuang, CHEN Wenbo, LIN Xin. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 407-410.
    [9]LIU Liangming, LIANG Yitong, MA Huiyun, HUANG Jing. Relationship Research Between MODIS-NDVI and AVHRR-NDVI[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 307-310.
    [10]WANG Pengxin, GONG Jianya, LI Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418.
  • Cited by

    Periodical cited type(11)

    1. 杨军,张金影,康玥. 基于自注意力机制的高分遥感影像语义分割. 哈尔滨工程大学学报. 2025(02): 344-354 .
    2. 梁欣荣,冯勃. 基于生成对抗网络的窗户精细结构半监督识别. 测绘与空间地理信息. 2024(02): 186-189 .
    3. 冯德军,郭笑坤,曲晓玉,桂福坤,杨旭. 基于计算机视觉的大黄鱼表型参数测量研究. 中国水产科学. 2024(10): 1174-1185 .
    4. 张钰屏,刘籽琳,陈天其. 遥感影像变化检测研究进展. 电脑与信息技术. 2023(02): 15-18 .
    5. 李家艺,黄昕,胡宇平,张震,张雪婷,张淑蕾,方兴. 夜光影像和高分辨率影像耦合的土耳其Mw 7.8地震建筑倒塌智能解译. 武汉大学学报(信息科学版). 2023(10): 1706-1714 .
    6. 万立志,张运楚,葛浙东,王超. 基于孪生神经网络的小样本人脸识别. 山东建筑大学学报. 2022(01): 79-85+99 .
    7. 仇娇慧,贝绍轶,尹明锋,卿宏军. 基于改进YOLOv5s的齿轮表面缺陷检测. 现代制造工程. 2022(03): 104-113 .
    8. 彭懋磊,郝宁,李垠,张萍. 基于0.2m分辨率遥感影像的震害信息提取仿真. 计算机仿真. 2022(10): 209-213 .
    9. 章天杰,王洋洋,韩海航,罗雪. 基于改进两步式卷积神经网络的沥青路面裂缝识别方法. 公路交通科技. 2022(10): 1-8+58 .
    10. 李雨龙,陈松,李鑫,李昌龙,赵耀耀,李顺. 基于深度学习的管件识别与位姿估计研究. 制造技术与机床. 2022(12): 70-75 .
    11. 郭奕,黄佳芯,邓博奇,刘洋成. 改进Mask R-CNN的真实环境下鱼体语义分割. 农业工程学报. 2022(23): 162-169 .

    Other cited types(18)

Catalog

    Article views (1155) PDF downloads (153) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return