ZHAN Zongqian, LI Yihui, WANG Chendong, ZHENG Li. A Stepwise Refinement Method for Image Matching and Aerotriangulation Using Correction of Local Relative Geometric Distortion[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1620-1627. DOI: 10.13203/j.whugis20170342
Citation: ZHAN Zongqian, LI Yihui, WANG Chendong, ZHENG Li. A Stepwise Refinement Method for Image Matching and Aerotriangulation Using Correction of Local Relative Geometric Distortion[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1620-1627. DOI: 10.13203/j.whugis20170342

A Stepwise Refinement Method for Image Matching and Aerotriangulation Using Correction of Local Relative Geometric Distortion

Funds: 

The National Key Research and Development Program of China 2016YFB0501403

the National Natural Science Foundation of China 61871295

More Information
  • Author Bio:

    ZHAN Zongqian, PhD, associate professor, specializes in digital photogrammetry and computer vision. E-mail: zqzhan@sgg.whu.edu.cn

  • Corresponding author:

    ZHENG Li, PhD, associate professor. E-mail: lzheng@sgg.whu.edu.cn

  • Received Date: October 24, 2017
  • Published Date: November 04, 2018
  • Aiming at the difficulties of image matching and aerotriangulation for unmanned aerial vehical image in the area with high altitude drop, this paper presents a stepwise refinement method for image matching and aerotriangulation using correction of local relative geometric distortion (CLRGD) which is based on the initial aerotriangulation and rough terrain model. It takes into account the image relative distortion caused by relative tilt of stereo image pairs and topographic relief in which an algorithm for single point accurate matching considering CLRGD has been adopted in the process of normal aerotriangulation. Then image matching and orientation can complement each other so as to improve the accuracy and reliability of matching and aerotriangulation. Experimental analysis proves that the algorithm can do well in the image relative geometric distortion, strengthen the regional network and further improve the accuracy of the aerotriangulation in the area with high altitude drop. In terms of efficiency, the image range of CLRGD is relatively limited due to the use of rough terrain model, so the algorithm can basically meets the actual production needs. If considering that the accurate single point matching used by each tie point has good independence, a parallel algorithm can further improve the efficiency.
  • [1]
    张剑清, 潘励, 王树根.摄影测量学[M]. 2版.武汉:武汉大学出版社, 2009

    Zhang Jianqing, Pan Li, Wang Shugen. Photogrammetry[M]. 2nd ed. Wuhan: Wuhan University Press, 2009
    [2]
    Agarwal S, Snavely N, Simon I, et al. Building Rome in a Day[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009
    [3]
    Hartmann W, Havlena M, Schindler K. Recent Developments in Large-Scale Tie-Point Matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115(5):47-62 http://www.sciencedirect.com/science/article/pii/S0924271615002063
    [4]
    Mikolajczyk K, Tuytelaars T, Schmid C, et al. A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision, 2005, 65(1-2):43-72 doi: 10.1007/s11263-005-3848-x
    [5]
    Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110 doi: 10.1023/B:VISI.0000029664.99615.94
    [6]
    Mikolajczyk K, Schmid C. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision, 2004, 60(1): 63-86 doi: 10.1023/B:VISI.0000027790.02288.f2
    [7]
    Morel J M, Yu G. ASIFT:A New Framework for Fully Affine Invariant Image Comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469 http://d.old.wanfangdata.com.cn/Periodical/jsjgc201302050
    [8]
    Yu G, Morel J M. ASIFT: An Algorithm for Fully Affine Invariant Comparison[EB/OL]. http://demo.ipol.im/demo/my_affine_sift/, 2017
    [9]
    Bay H, Ess A, Tuytelaars T, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359 doi: 10.1016/j.cviu.2007.09.014
    [10]
    肖雄武, 李德仁, 郭丙轩, 等.一种具有视点不变性的倾斜影像快速匹配方法[J].武汉大学学报·信息科学版, 2016, 41(9): 1 151-1 159 http://ch.whu.edu.cn/CN/abstract/abstract5522.shtml

    Xiao Xiongwu, Li Deren, Guo Bingxuan, et al. A Robust and Rapid Viewpoint-Invariant Matching Method for Oblique Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 151-1 159 http://ch.whu.edu.cn/CN/abstract/abstract5522.shtml
    [11]
    李德仁, 肖雄武, 郭丙轩, 等.倾斜影像自动空三及其在城市真三维模型重建中的应用[J].武汉大学学报·信息科学版, 2016, 41(6): 711-721 http://ch.whu.edu.cn/CN/abstract/abstract5454.shtml

    Li Deren, Xiao Xiongwu, Guo Bingxuan, et al. Oblique Image Based Automatic Aerotriangulation and Its Application in 3D City Model Reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 711-721 http://ch.whu.edu.cn/CN/abstract/abstract5454.shtml
    [12]
    姚国标, 邓喀中, 艾海滨, 等.倾斜立体影像自动准稠密匹配与三维重建算法[J].武汉大学学报·信息科学版, 2014, 39(7): 843-849 http://ch.whu.edu.cn/CN/abstract/abstract3031.shtml

    Yao Guobiao, Deng Kazhong, Ai Haibin, et al. An Algorithm of Automatic Quasi-dense Matching and Three-Dimensional Reconstruction for Oblique Ste-reo Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 843-849 http://ch.whu.edu.cn/CN/abstract/abstract3031.shtml
    [13]
    张力, 艾海滨, 许彪, 等.基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法[J].测绘学报, 2017, 46(5): 554-564 http://d.old.wanfangdata.com.cn/Periodical/chxb201705004

    Zhang Li, Ai Haibin, Xu Biao, et al. Automatic Tie-Point Extraction Based on Multiple-Image Matching and Bundle Adjustment of Large Block of Oblique Aerial Images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 554-564 http://d.old.wanfangdata.com.cn/Periodical/chxb201705004
    [14]
    Wu B, Zhang Y, Zhu Q. A Triangulation-Based Hierarchical Image Matching Method for Wide-Baseline Images[J]. Photogrammetric Engineering & Remote Sensing, 2015, 77(7): 695-708 http://agris.fao.org/agris-search/search.do?recordID=US201600239668
    [15]
    Zhan Z Q, Wang X, Wei M L. Fast Method of Constructing Image Correlations to Build a Free Network Based on Image Multi-vocabulary Trees[J]. Journal of Electronic Imaging, 2015, 24(3):1-12
    [16]
    Wang X, Zhan Z Q, Heipke C. An Efficient Method to Detect Mutual Overlap of a Large Set of Unordered Images for Structure-From-Motion[C]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, German, 2017
    [17]
    李德仁, 袁修孝.误差处理与可靠性理论[M].武汉:武汉大学出版社, 2002

    Li Deren, Yuan Xiuxiao. Error Processing and Reliability Theory[M]. Wuhan: Wuhan University Press, 2002
    [18]
    Shewchuk J R. Triangle: A Two-Dimensional Qua-lity Mesh Generator and Delaunay Triangulator[EB/OL]. https: //www.cs.cmu.edu/~quake/triangle.html, 2017
    [19]
    李德仁, 郑肇葆.解析摄影测量学[M].北京:测绘出版社, 1992

    Li Deren, Zheng Zhaobao. Analytical Photogrammetry[M]. Beijing:Surveying and Mapping Press, 1992
  • Related Articles

    [1]HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228
    [2]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [3]WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
    [4]ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312
    [5]GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006
    [6]QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833.
    [7]QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281.
    [8]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [9]JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32.
    [10]YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184.

Catalog

    Article views (1630) PDF downloads (319) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return