Citation: | WANG Leyang, ZHAO Yingwen. Adaptive Monte Carlo Method for Precision Estimation of Nonlinear Adjustment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 206-213, 220. DOI: 10.13203/j.whugis20170064 |
[1] |
陶本藻.形变反演模型的非线性平差[J].武汉大学学报·信息科学版, 2001, 26(6):504-508 http://ch.whu.edu.cn/CN/abstract/abstract5222.shtml
Tao Benzao. Non-linear Adjustment of Deformation Inversion Model[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6):504-508 http://ch.whu.edu.cn/CN/abstract/abstract5222.shtml
|
[2] |
李朝奎.非线性模型空间测量数据处理理论及其应用[D].长沙: 中南大学, 2001
Li Chaokui. Theory and Application of Data Processing in Space of Nonlinear Models[D]. Changsha: Central South University, 2001
|
[3] |
刘国林.非线性最小二乘与测量平差[M].北京:测绘出版社, 2002
Liu Guolin. Nonlinear Least Squares and Surveying Adjustment[M]. Beijing:Surveying and Mapping Press, 2002
|
[4] |
王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社, 2002
Wang Xinzhou. The Theory and Application of Parameter Estimation of Nonlinear Model[M]. Wuhan:Wuhan University Press, 2002
|
[5] |
张松林.非线性半参数模型最小二乘估计理论及应用研究[D].武汉: 武汉大学, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006031323.htm
Zhang Songlin. The Theoretical and Application Research on Nonlinear Semiparametric Model[D]. Wuhan: Wuhan University, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006031323.htm
|
[6] |
唐利民.非线性最小二乘的不适定性及算法研究[D].长沙: 中南大学, 2011
Tang Limin. Research on the Ill-posed and Solving Methods of Nonlinear Least Squares Problem[D]. Changsha: Central South University, 2011
|
[7] |
薛树强, 杨元喜, 党亚民.测距定位方程非线性平差的封闭牛顿迭代公式[J].测绘学报, 2014, 43(8):771-777 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200007705
Xue Shuqiang, Yang Yuanxi, Dang Yamin. A Closed-form of Newton Iterative Formula for Nonlinear Adjustment of Distance Equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):771-777 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200007705
|
[8] |
Xue S, Yang Y, Dang Y. A Closed-form of Newton Method for Solving Over-Determined Pseudo-Distance Equations[J]. Journal of Geodesy, 2014, 88(5):441-448 doi: 10.1007/s00190-014-0695-y
|
[9] |
Box M J. Bias in Nonlinear Estimation[J]. Journal of the Royal Statistical Society, Series B (Metho-dological), 1971, 33(2):171-201 doi: 10.1111/rssb.1971.33.issue-2
|
[10] |
Teunissen P J G, Knickmeyer E H. Nonlinearity and Least Squares[J]. CISM Journal ASCGC, 1988, 42(4):321-330 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201803008
|
[11] |
Teunissen P J G. First and Second Moments of Non-Linear Least-Squares Estimators[J]. Bulletin Géodésique, 1989, 63(3):253-262 doi: 10.1007/BF02520475
|
[12] |
Golub G H, van Loan C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893 doi: 10.1137/0717073
|
[13] |
Schaffrin B, Snow K. Total Least-Squares Regularization of Tykhonov Type and an Ancient Racetrack in Corinth[J]. Linear Algebra and Its Applications, 2010, 432(8):2061-2076 doi: 10.1016/j.laa.2009.09.014
|
[14] |
Fang X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Hanover: Leibniz University of Hanover, 2011
|
[15] |
Shen Y, Li B, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238 doi: 10.1007/s00190-010-0431-1
|
[16] |
Xu P, Liu J, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675 doi: 10.1007/s00190-012-0552-9
|
[17] |
姚宜斌, 孔建.顾及设计矩阵随机误差的最小二乘组合新解法[J].武汉大学学报·信息科学版, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/abstract/abstract3065.shtml
Yao Yibin, Kong Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/abstract/abstract3065.shtml
|
[18] |
Tong X, Jin Y, Zhang S, et al. Bias-Corrected Weighted Total Least-Squares Adjustment of Condition Equations[J]. Journal of Surveying Engineering, 2014, 141(2):04014013 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26f7db7fb994669a82ad317964b29beb
|
[19] |
Zeng W, Liu J, Yao Y. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89(2):111-119 doi: 10.1007/s00190-014-0775-z
|
[20] |
Fang X. Weighted Total Least-Squares with Constraints:A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469 doi: 10.1007/s00190-015-0790-8
|
[21] |
Schaffrin B. Adjusting the Errors-in-Variables Model: Linearized Least-Squares vs. Nonlinear Total Least-Squares[C]//Ⅷ Hotine-Marussi Symposium on Mathematical Geodesy. Switzerland: Springer International Publishing, 2015: 301-307
|
[22] |
Fang X, Wu Y. On the Errors-in-Variables Model with Equality and Inequality Constraints for Selected Numerical Examples[J]. Acta Geodaetica et Geophysica, 2016, 51(3):515-525 doi: 10.1007/s40328-015-0141-5
|
[23] |
王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J].测绘学报, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004
Wang Leyang, Yu Hang, Chen Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004
|
[24] |
王乐洋, 赵英文, 陈晓勇, 等.多元总体最小二乘问题的牛顿解法[J].测绘学报, 2016, 45(4):411-417 http://d.old.wanfangdata.com.cn/Periodical/chxb201604005
Wang Leyang, Zhao Yingwen, Chen Xiaoyong, et al. A Newton Algorithm for Multivariate Total Least Squares Problems[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):411-417 http://d.old.wanfangdata.com.cn/Periodical/chxb201604005
|
[25] |
曾文宪, 方兴, 刘经南, 等.通用EIV平差模型及其加权整体最小二乘估计[J].测绘学报, 2016, 45(8):890-894 http://d.old.wanfangdata.com.cn/Periodical/chxb201608002
Zeng Wenxian, Fang Xing, Liu Jingnan, et al. Weighted Total Least Squares of Universal EIV Adjustment Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):890-894 http://d.old.wanfangdata.com.cn/Periodical/chxb201608002
|
[26] |
Fang X. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88(8):805-816 doi: 10.1007/s00190-014-0723-y
|
[27] |
Amiri-Simkooei A R, Zangeneh-Nejad F, Asgari J. On the Covariance Matrix of Weighted Total Least-Squares Estimates[J]. Journal of Surveying Engineering, 2016, 142(3):04015014 doi: 10.1061/(ASCE)SU.1943-5428.0000153
|
[28] |
JCGM 101: 2008. Evaluation of Measurement Data-Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement"-Propagation of Distributions Using a Monte Carlo Method[S]. Sèvres: JCGM, 2008
|
[29] |
Sneeuy N, Krumm F, Roth M. Adjustment Theory[M]. Stuttgart:University of Stuttgart, 2015
|
[30] |
Ratkowsky D A. Nonlinear Regression Modeling[M]. New York:Marcel Dekker, 1983
|
[31] |
Robert C, Casella G. Monte Carlo Statistical Methods[M]. Berlin:Springer Science & Business Media, 2013
|
[32] |
Fang X. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749 doi: 10.1007/s00190-013-0643-2
|
[1] | JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316 |
[2] | LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127 |
[3] | WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491 |
[4] | XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335 |
[5] | JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270 |
[6] | SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159 |
[7] | ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342 |
[8] | GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724. |
[9] | GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241. |
[10] | XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722. |