WANG Leyang, ZHAO Yingwen. Adaptive Monte Carlo Method for Precision Estimation of Nonlinear Adjustment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 206-213, 220. DOI: 10.13203/j.whugis20170064
Citation: WANG Leyang, ZHAO Yingwen. Adaptive Monte Carlo Method for Precision Estimation of Nonlinear Adjustment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 206-213, 220. DOI: 10.13203/j.whugis20170064

Adaptive Monte Carlo Method for Precision Estimation of Nonlinear Adjustment

Funds: 

The National Natural Science Foundation of China 41874001

The National Natural Science Foundation of China 41664001

Support Program for Outstanding Youth Talents in Jiangxi Province 20162BCB23050

the National Key Research and Development Program of China 2016YFB0501405

More Information
  • Author Bio:

    WANG Leyang, PhD, associate professor, specializes in geodetic inversion and geodetic data processing.E-mail::wleyang@163.com

  • Received Date: August 15, 2018
  • Published Date: February 04, 2019
  • Among existing theories on precision estimation of nonlinear adjustment, the simulation number of Monte Carlo method generally is chosen subjectively and its result also cannot be controlled directly. Besides those, the biases of parameter estimates, corrections of observations and the estimate of variance of unit weight are not taken into consideration simultaneously. The adaptive Monte Carlo method is combined with precision estimation of nonlinear adjustment for solving problems given above in this paper. By calculating biases of estimates and covariances matrix of parameter estimates, the complete process of precision estimation based on adaptive Monte Carlo is given. With the help of the term of antithetic variates, the antithetic and adaptive Monte Carlo algorithm is proposed for biases of parameter estimates. Results from two examples of straight line fitting model and ellipse fitting model show that the adaptive Monte Carlo method in this paper can obtain the stable and reasonable effects for precision estimation of nonlinear adjustment with extensive applicability, the antithetic and adaptive Monte Carlo in this paper is better at convergence and computational efficiency for calculating biases of parameter estimates.
  • [1]
    陶本藻.形变反演模型的非线性平差[J].武汉大学学报·信息科学版, 2001, 26(6):504-508 http://ch.whu.edu.cn/CN/abstract/abstract5222.shtml

    Tao Benzao. Non-linear Adjustment of Deformation Inversion Model[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6):504-508 http://ch.whu.edu.cn/CN/abstract/abstract5222.shtml
    [2]
    李朝奎.非线性模型空间测量数据处理理论及其应用[D].长沙: 中南大学, 2001

    Li Chaokui. Theory and Application of Data Processing in Space of Nonlinear Models[D]. Changsha: Central South University, 2001
    [3]
    刘国林.非线性最小二乘与测量平差[M].北京:测绘出版社, 2002

    Liu Guolin. Nonlinear Least Squares and Surveying Adjustment[M]. Beijing:Surveying and Mapping Press, 2002
    [4]
    王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社, 2002

    Wang Xinzhou. The Theory and Application of Parameter Estimation of Nonlinear Model[M]. Wuhan:Wuhan University Press, 2002
    [5]
    张松林.非线性半参数模型最小二乘估计理论及应用研究[D].武汉: 武汉大学, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006031323.htm

    Zhang Songlin. The Theoretical and Application Research on Nonlinear Semiparametric Model[D]. Wuhan: Wuhan University, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006031323.htm
    [6]
    唐利民.非线性最小二乘的不适定性及算法研究[D].长沙: 中南大学, 2011

    Tang Limin. Research on the Ill-posed and Solving Methods of Nonlinear Least Squares Problem[D]. Changsha: Central South University, 2011
    [7]
    薛树强, 杨元喜, 党亚民.测距定位方程非线性平差的封闭牛顿迭代公式[J].测绘学报, 2014, 43(8):771-777 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200007705

    Xue Shuqiang, Yang Yuanxi, Dang Yamin. A Closed-form of Newton Iterative Formula for Nonlinear Adjustment of Distance Equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):771-777 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20142014092200007705
    [8]
    Xue S, Yang Y, Dang Y. A Closed-form of Newton Method for Solving Over-Determined Pseudo-Distance Equations[J]. Journal of Geodesy, 2014, 88(5):441-448 doi: 10.1007/s00190-014-0695-y
    [9]
    Box M J. Bias in Nonlinear Estimation[J]. Journal of the Royal Statistical Society, Series B (Metho-dological), 1971, 33(2):171-201 doi: 10.1111/rssb.1971.33.issue-2
    [10]
    Teunissen P J G, Knickmeyer E H. Nonlinearity and Least Squares[J]. CISM Journal ASCGC, 1988, 42(4):321-330 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201803008
    [11]
    Teunissen P J G. First and Second Moments of Non-Linear Least-Squares Estimators[J]. Bulletin Géodésique, 1989, 63(3):253-262 doi: 10.1007/BF02520475
    [12]
    Golub G H, van Loan C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893 doi: 10.1137/0717073
    [13]
    Schaffrin B, Snow K. Total Least-Squares Regularization of Tykhonov Type and an Ancient Racetrack in Corinth[J]. Linear Algebra and Its Applications, 2010, 432(8):2061-2076 doi: 10.1016/j.laa.2009.09.014
    [14]
    Fang X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Hanover: Leibniz University of Hanover, 2011
    [15]
    Shen Y, Li B, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238 doi: 10.1007/s00190-010-0431-1
    [16]
    Xu P, Liu J, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675 doi: 10.1007/s00190-012-0552-9
    [17]
    姚宜斌, 孔建.顾及设计矩阵随机误差的最小二乘组合新解法[J].武汉大学学报·信息科学版, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/abstract/abstract3065.shtml

    Yao Yibin, Kong Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/abstract/abstract3065.shtml
    [18]
    Tong X, Jin Y, Zhang S, et al. Bias-Corrected Weighted Total Least-Squares Adjustment of Condition Equations[J]. Journal of Surveying Engineering, 2014, 141(2):04014013 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26f7db7fb994669a82ad317964b29beb
    [19]
    Zeng W, Liu J, Yao Y. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89(2):111-119 doi: 10.1007/s00190-014-0775-z
    [20]
    Fang X. Weighted Total Least-Squares with Constraints:A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469 doi: 10.1007/s00190-015-0790-8
    [21]
    Schaffrin B. Adjusting the Errors-in-Variables Model: Linearized Least-Squares vs. Nonlinear Total Least-Squares[C]//Ⅷ Hotine-Marussi Symposium on Mathematical Geodesy. Switzerland: Springer International Publishing, 2015: 301-307
    [22]
    Fang X, Wu Y. On the Errors-in-Variables Model with Equality and Inequality Constraints for Selected Numerical Examples[J]. Acta Geodaetica et Geophysica, 2016, 51(3):515-525 doi: 10.1007/s40328-015-0141-5
    [23]
    王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J].测绘学报, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004

    Wang Leyang, Yu Hang, Chen Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004
    [24]
    王乐洋, 赵英文, 陈晓勇, 等.多元总体最小二乘问题的牛顿解法[J].测绘学报, 2016, 45(4):411-417 http://d.old.wanfangdata.com.cn/Periodical/chxb201604005

    Wang Leyang, Zhao Yingwen, Chen Xiaoyong, et al. A Newton Algorithm for Multivariate Total Least Squares Problems[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):411-417 http://d.old.wanfangdata.com.cn/Periodical/chxb201604005
    [25]
    曾文宪, 方兴, 刘经南, 等.通用EIV平差模型及其加权整体最小二乘估计[J].测绘学报, 2016, 45(8):890-894 http://d.old.wanfangdata.com.cn/Periodical/chxb201608002

    Zeng Wenxian, Fang Xing, Liu Jingnan, et al. Weighted Total Least Squares of Universal EIV Adjustment Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):890-894 http://d.old.wanfangdata.com.cn/Periodical/chxb201608002
    [26]
    Fang X. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88(8):805-816 doi: 10.1007/s00190-014-0723-y
    [27]
    Amiri-Simkooei A R, Zangeneh-Nejad F, Asgari J. On the Covariance Matrix of Weighted Total Least-Squares Estimates[J]. Journal of Surveying Engineering, 2016, 142(3):04015014 doi: 10.1061/(ASCE)SU.1943-5428.0000153
    [28]
    JCGM 101: 2008. Evaluation of Measurement Data-Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement"-Propagation of Distributions Using a Monte Carlo Method[S]. Sèvres: JCGM, 2008
    [29]
    Sneeuy N, Krumm F, Roth M. Adjustment Theory[M]. Stuttgart:University of Stuttgart, 2015
    [30]
    Ratkowsky D A. Nonlinear Regression Modeling[M]. New York:Marcel Dekker, 1983
    [31]
    Robert C, Casella G. Monte Carlo Statistical Methods[M]. Berlin:Springer Science & Business Media, 2013
    [32]
    Fang X. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749 doi: 10.1007/s00190-013-0643-2
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (2312) PDF downloads (262) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return