JIN Weitong, LI Fei, YANG Xuan, YAN Jianguo, YE Mao, HAO Weifeng, QU Chunkai. High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1483-1489. DOI: 10.13203/j.whugis20170020
Citation: JIN Weitong, LI Fei, YANG Xuan, YAN Jianguo, YE Mao, HAO Weifeng, QU Chunkai. High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1483-1489. DOI: 10.13203/j.whugis20170020

High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration

Funds: 

The National Natural Science Foundation of China 41374024

The National Natural Science Foundation of China 41604004

The National Natural Science Foundation of China 41174019

the Hubei Province Natural Science Foundation Innovation Group Project 2015CFA011

the Open Research Fund of State Key Laboratory of Astronautic Dynamics 2016ADL-DW0103

the Open Research Fund of State Key Laboratory of Space Target Measurement 

the China Postdoctoral Science Foundation 2016M602360

More Information
  • Author Bio:

    JIN Weitong, postgraduate, specializes in planetary spacecraft precision orbit determination. E-mail: jwt_whdx@whu.edu.cn

  • Corresponding author:

    YE Mao, PhD. E-mail: mye@whu.edu.cn

  • Received Date: April 27, 2017
  • Published Date: October 04, 2018
  • For precise orbit determination of deep space exploration, precision of traditional two-way range-rate model is limited by computers' word length, where the main error source is the simple differenciation of two subsequent Newtonian ranges(up-leg and down-leg) devided by the counting interval. So interplanetary two-way range-rate model is built up in this paper to compute these two necessary differences highy precisely. Of course, we give the formula of this new model and its detailed steps as well as necessary recursion formula of Chebyshev differential polynomial. The new model is implemented in Wuhan University deep-space orbit determination and gravity recovery system-WUDOGS and two scenarios of simulation are adopted to validate it from two aspects:precision of calculation values and initial orbit based on Mars express mission. Simulating results show that the new model can improve precision of calculation values by two orders of magnitude, and reduce extra numerical error during orbit determination, which can provide reference for orbit determination in long-distance deep space exploration of high precision in China.
  • [1]
    叶茂, 李斐, 鄢建国, 等. GRAIL月球重力场模型定轨性能分析[J].武汉大学学报·信息科学版, 2016, 41(1):93-99 http://ch.whu.edu.cn/CN/abstract/abstract3439.shtml

    Ye Mao, Li Fei, Yan Jianguo, et al. The Analysis of GRAIL Gravity Model's Orbit Determination Ability[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):93-99 http://ch.whu.edu.cn/CN/abstract/abstract3439.shtml
    [2]
    Konopliv A S, Park R S, Folkner W M. An Improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data[J]. Icarus, 2016, 274:253-260 doi: 10.1016/j.icarus.2016.02.052
    [3]
    Zannoni M, Tortora P. Numerical Error in Interplanetary Orbit Determination Software[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1008-1018 doi: 10.2514/1.59294
    [4]
    Asmar S W, Armstrong J W, Iess L, et al. Spacecraft Doppler Tracking:Noise Budget and Accuracy Achievable in Precision Radio Science Observations[J]. Radio Science, 2005, 40(2):1-9 http://cn.bing.com/academic/profile?id=258f5f118e171c5378b34c0ac6a30a86&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Armstrong J W, Iess L, Tortora P, et al. Stochastic Gravitational Wave Background:Upper Limits in the 10-6 to 10-3 Hz Band[J]. The Astrophysical Journal, 2003, 599(2):806 doi: 10.1086/apj.2003.599.issue-2
    [6]
    Bertotti B, Iess L, Tortora P. A Yest of General Re-lativity Using Radio Links with the Cassini Spacecraft[J]. Nature, 2003, 425(6956):374-376 doi: 10.1038/nature01997
    [7]
    Pätzold M, Häusler B, Tyler G L, et al. Mars Express 10 Years at Mars:Observations by the Mars Express Radio Science Experiment (MaRS)[J]. Planetary and Space Science, 2016, 127:44-90 doi: 10.1016/j.pss.2016.02.013
    [8]
    Anderson J D, Lau E L, Schubert G, et al. Gravity Inversion Considerations for Radio Doppler Data from the JUNO Jupiter Polar Orbiter[C]. Bulletin of the American Astronomical Society, San Diego, America, 2004
    [9]
    Moyer T D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Na-vigation[M]. Hoboken:John-Wiley & Sons, 2003
    [10]
    李济生.人造卫星精密轨道确定[M].北京:解放军出版社, 1995

    Li Jisheng. Satellite Precision Orbit Determination[M]. Beijing:Chinese People's Liberation Army Publishing House, 1995
    [11]
    叶茂.月球探测器精密定轨软件研制与四程中继跟踪测量模式研究[D].武汉: 武汉大学, 2016

    Ye Mao.Development of Lunar Spacecraft Precision Orbit Determination Software System and Research on a Four-Way Relay Tracking Measurement Model[D]. Wuhan: Wuhan University, 2016
    [12]
    Tommei G, Milani A, Vokrouhlický D. Light-time Computations for the BepiColombo Radio Science Experiment[J]. Celestial Mechanics and Dynamical Astronomy, 2010, 107(1/2):285-298 https://core.ac.uk/display/50025659
    [13]
    Widrow B. Statistical Analysis of Amplitude-quantized Sampled-data Systems[J]. Transactions of the American Institute of Electrical Engineers, Part Ⅱ:Applications and Industry, 1961, 79(6):555-568 doi: 10.1109/TAI.1961.6371702
    [14]
    曹建峰, 黄勇, 刘磊, 等.深空探测器三程多普勒建模与算法实现[J].宇航学报, 2017, 38(3):304-309 doi: 10.3873/j.issn.1000-1328.2017.03.011

    Cao Jianfeng, Huang Yong, Liu Lei, et al. Modeling and Algorithm Realization of Three-Way Doppler for Deep Space Exploration[J]. Journal of Astronautics, 2017, 38(3):304-309 doi: 10.3873/j.issn.1000-1328.2017.03.011
    [15]
    叶茂, 李斐, 鄢建国, 等.国内外深空探测器精密定轨软件研究综述及WUDOGS简介[J].飞行器测控学报, 2017, 36(1):1-12 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201701008

    Ye Mao, Li Fei, Yan Jianguo, et al. Review of Deep-space Orbit Determination Software and Introduction to WUDOGS[J]. Journal of Spacecraft TT&C Technology, 2017, 36(1):1-12 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201701008
    [16]
    黄勇, 胡小工, 曹建峰, 等.上海天文台火星卫星定轨软件系统[J].飞行器测控学报, 2009, 28(6):83-89 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb200906020

    Huang Yong, Hu Xiaogong, Cao Jianfeng, et al. The Mars Satellite Orbit Determination Software at Shanghai Astronomical Observatory[J]. Journal of Spacecraft TT&C Technology, 2009, 28(6):83-89 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb200906020
    [17]
    胡松杰, 唐歌实.北京中心深空探测器精密定轨与分析软件系统[J].飞行器测控学报, 2010, 29(5):69-74 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201005016

    Hu Songjie, Tang Geshi. BACC Orbit Determination and Analysis Software for Deep-Space Explorers[J]. Journal of Spacecraft TT&C Technology, 2010, 29(5):69-74 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201005016
    [18]
    叶茂, 李斐, 鄢建国, 等.深空探测器精密定轨与重力场解算软件系统WUDOGS及其应用分析[J].测绘学报, 2017, 46(3):288-296 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201703004.htm

    Ye Mao, Li Fei, Yan Jianguo, et al. Wuhan University Deep-Space Orbit Determination and Gravity Recovery System WUDOGS and Its Application Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):288-296 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201703004.htm
    [19]
    杨轩, 鄢建国, 叶茂, 等.火星探测器精密定轨软件研制及实测数据处理[J].武汉大学学报·信息科学版, DOI: 10.13203/j.whugis20160494

    Yang Xuan, Yan Jianguo, Ye Mao, et al. Development of Precise Orbit Determination Software for Mars Probe and Data Processing for MEX[J]. Geomatics and Information Science of Wuhan University, DOI: 10.13203/j.whugis20160494
    [20]
    Budnik F, Morley T A, Mackenzie R A. ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience[C]. 18th International Symposium on Space Flight Dynamics, Munich, Germany, 2004
    [21]
    ANSI/IEEE Std 754-1985. IEEE Standard for Binary Floating-Point Arithmetic[S]. IEEE, New York, 1985
    [22]
    Standish E M. The JPL Planetary Ephemerides[J].Celestial Mechanics and Dynamical Astronomy, 1982, 26(2):181-186 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1104.0042
    [23]
    Acton C H. Ancillary Data Services of NASA's Navigation and Ancillary Information Facility[J]. Planetary and Space Science, 1996, 44(1):65-70 doi: 10.1016/0032-0633(95)00107-7
    [24]
    Pavlis D E, Wimert J, McCarthy J. GEODYN Ⅱ System Description, NASA-CR-139149[R]. Greenbelt: SGT Inc., 2013
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (1564) PDF downloads (209) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return