ZHU Yongchao, ZOU Jingui, YU Kegen. A New Sea Ice Distribution Detection Method Using GNSS Reflected Signals[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1472-1477. DOI: 10.13203/j.whugis20160539
Citation: ZHU Yongchao, ZOU Jingui, YU Kegen. A New Sea Ice Distribution Detection Method Using GNSS Reflected Signals[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1472-1477. DOI: 10.13203/j.whugis20160539

A New Sea Ice Distribution Detection Method Using GNSS Reflected Signals

Funds: 

The National Natural Science Foundation of China 41574031

More Information
  • Author Bio:

    ZHU Yongchao, PhD candidate, specializes in the study of global navigation satellite system (GNSS) applications. E-mail: ychzhu@whu.edu.cn

  • Corresponding author:

    ZOU Jingui, PhD, professor. E-mail: jgzou@sgg.whu.edu.cn

  • Received Date: September 04, 2017
  • Published Date: October 04, 2018
  • Global navigation satellite system reflectometry (GNSS-R) delay-doppler map (DDM) obtained with TechDemoSat-1 (TDS-1) is used to detect ice presence over Greenland region of Arctic. DDM of sea ice shows less spreading than those of open water as the scattered GNSS signals follow the coherenty scattering model and diffuse scattering model over ice and water respectively. The transition from seawater to sea ice could lead to decrease of the pixel number of DDM. A pixel number ratio of adjacent DDM based detection scheme is proposed through employing a threshold method to distinguish sea ice and sea water, and to analyze sea ice distribution of Greenland region. Sea ice distribution of Greenland with time is analyzed through using multi-period data from TDS-1. The performance of the proposed method is assessed with a mathematical statistical approach through comparing with ground-truth sea ice data from the National Snow and Ice Data Center, USA. The effectiveness of this approach is validated with a probability of detection up to 98.76%-99.21%, and the overall probability of detection is 99.09%.
  • [1]
    Martin-Neira M. A Passive Reflectometry and Interferometry System (PARIS):Application to Ocean Altimetry[J]. ESA Journal, 1993, 17:331-355 http://cn.bing.com/academic/profile?id=bf6bce268d1013b560e2bb64dd43a5bf&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    李伟强, 杨东凯, 李明里, 等.面向遥感的GNSS反射信号接收处理系统及实验[J].武汉大学学报·信息科学版, 2011, 36(10):1204-1208 http://ch.whu.edu.cn/CN/abstract/abstract673.shtml

    Li Weiqiang, Yang Dongkai, Li Mingli, et al. Design and Experiments of GNSS-R Receiver System for Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1204-1208 http://ch.whu.edu.cn/CN/abstract/abstract673.shtml
    [3]
    Clarizia M P, Ruf C, Cipollini P, et al. First Spaceborne Observation of Sea Surface Height Using GPS-Reflectometry[J]. Geophysical Research Letters, 2016, 43(2):767-774 doi: 10.1002/2015GL066624
    [4]
    Foti G, Gommenginger C, Jales P, et al. Spaceborne GNSS Reflectometry for Ocean Winds:First Results from the UK TechDemoSat-1 Mission[J]. Geophysical Research Letters, 2015, 42(13):5435-5441 doi: 10.1002/2015GL064204
    [5]
    Yu K, Ban W, Zhang X, et al. Snow Depth Estimation Based on Multipath Phase Combination of GPS Triple-Frequency Signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):5100-5109 doi: 10.1109/TGRS.2015.2417214
    [6]
    Jacobson M D. Inferring Snow Water Equivalent for a Snow-covered Ground Reflector Using GPS Multipath Signals[J]. Remote Sensing, 2010, 2(10):2426-2441 doi: 10.3390/rs2102426
    [7]
    Komjathy A, Maslanik J, Zavorotny V U, et al. Sea Ice Remote Sensing Using Surface Reflected GPS Signals[C]. IEEE Geoscience and Remote Sensing Symposium, Honolulu, USA, 2000
    [8]
    Galley R J, Else B G T, Prinsenberg S J, et al. Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea-2009[J]. ARCTIC, 2013, 66(1):105-116 http://cn.bing.com/academic/profile?id=d3030d6fd2de61562d5d5180dceeaaea&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Fabra F, Cardellach E, Rius A, et al. Phase Alti-metry with Dual Polarization GNSS-R over Sea Ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6):2112-2121 doi: 10.1109/TGRS.2011.2172797
    [10]
    Zhang Y, Meng W, Gu Q, et al. Detection of Bohai Bay Sea Ice Using GPS-Reflected Signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):39-46 doi: 10.1109/JSTARS.2014.2357894
    [11]
    Yan Q, Huang W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps:First Results from the UK TechDemoSat-1 Mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10):4795-4801 doi: 10.1109/JSTARS.2016.2582690
    [12]
    Fetterer F, Savoie M, Helfrich S, et al. Multisensor Analyzed Sea Ice Extent-Northern Hemisphere[EB/OL].[2016-11-15]. https://doi.org/10.7265/N5GT5K3K
    [13]
    Jales P, Unwin M. Mission Description-GNSS Reflectometry on TDS-1 with the SGR-ReSI[EB/OL].[2016-11-15]. http://merrbys.co.uk/resources/documentation
    [14]
    Rodriguez-Alvarez N, Akos D M, Zavorotny V U, et al. Airborne GNSS-R Wind Retrievals Using Delay-Doppler Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):626-641 doi: 10.1109/TGRS.2012.2196437
  • Related Articles

    [1]WANG Xiaolong, ZHANG Liming, YAN Haowen, LU Xiaomin. A Coordinate Encryption Algorithm for Vector Spatial Data Using Haar Transform and Gaussian Random Number[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1946-1955. DOI: 10.13203/j.whugis20200219
    [2]NI Haochen, WU Zhongjie, JIA Jian, XU Dibao, RUI Yikang, WANG Jiechen. A Gird Line Vectorization Method Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 184-189. DOI: 10.13203/j.whugis20140582
    [3]HU Wei, TAO Weidong, YUAN Zhenyu, WANG Jiechen. A Method of Vectorization of Scanning Map Based on Voronoi Diagrams[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 470-474.
    [4]HUANG Xionghua, WANG Hongxia, JIANG Weizhen, CUI Gengshen. An Adaptive Robust Audio Blind Watermarking Algorithm Using Dithering Quantization and SNR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 121-125.
    [5]LI Fei, ZHOU Xiaoguang. A Self-intersecting Polygon Processing Algorithm in the Vectorization of Classified Raster Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 100-104.
    [6]WAN Xue. Generalized Point Photogrammetry Feature Extraction Based on Harris Operator and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 145-148.
    [7]ZHONG Heping, TANG Jinsong, ZHANG Sen, CHEN Ming. A Fast Phase Unwrapping Algorithm Based on Quantized Quality Map and Priority Queue[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 342-345.
    [8]ZHU Haijun, WU Huayi, LI Deren. DCT-Based GIS Vector Data Compression[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1123-1126.
    [9]Shen Weiming, Qiu Tong, Zeng Yong, Zhang Hua. Neural Network Based Vector Quantizer and Lossy Compressed Coding on Remotely Sensed Image[J]. Geomatics and Information Science of Wuhan University, 1996, 21(2): 124-127.
    [10]Yuan Guoliu. An Approach to the Design of the Vector Quantizer for Image Signals[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 74-81.
  • Cited by

    Periodical cited type(5)

    1. 朱武松. 抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用. 城市勘测. 2024(02): 133-136 .
    2. 王乐洋,孙坚强. 总体最小二乘回归预测模型的方差分量估计. 武汉大学学报(信息科学版). 2021(02): 280-288 .
    3. 王祝安,陈义,毛鹏宇. 加权整体最小二乘的验后估计在三维坐标转换中的应用. 大地测量与地球动力学. 2018(02): 216-220 .
    4. 王乐洋,李海燕,陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题. 武汉大学学报(信息科学版). 2018(01): 127-132 .
    5. 陶武勇,鲁铁定,许光煜,杨世安. 稳健总体最小二乘Helmert方差分量估计. 大地测量与地球动力学. 2017(11): 1193-1197 .

    Other cited types(6)

Catalog

    Article views (1340) PDF downloads (247) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return