ZHAO Hong, GUO Chunxi, CHENG Chuanlu, WANG Wenli, LIU Zhi, DONG Bo, WANG Jianwei. Estimation of Displacements Caused by Ocean Tide Loading Using Improved GPS Kinematic Precise Point Positioning Technique: A Case Study in Hong Kong, China[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 355-363. DOI: 10.13203/j.whugis20160519
Citation: ZHAO Hong, GUO Chunxi, CHENG Chuanlu, WANG Wenli, LIU Zhi, DONG Bo, WANG Jianwei. Estimation of Displacements Caused by Ocean Tide Loading Using Improved GPS Kinematic Precise Point Positioning Technique: A Case Study in Hong Kong, China[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 355-363. DOI: 10.13203/j.whugis20160519

Estimation of Displacements Caused by Ocean Tide Loading Using Improved GPS Kinematic Precise Point Positioning Technique: A Case Study in Hong Kong, China

Funds: 

The National Natural Science Foundation of China 4157040313

The National Natural Science Foundation of China 41774004

Science and Technology Innovation Project of SHASM 

More Information
  • Author Bio:

    ZHAO Hong, PhD, engineer, specializes in modelling ocean tide loading displacement. E-mail:zhaohong710@163.com

  • Received Date: April 24, 2017
  • Published Date: March 04, 2019
  • Compared with very long baseline interferometry (VLBI) and superconducting gravimeter (SG) techniques, Global Positioning System (GPS) technique has the advantages of global high-resolution coverage, long-term continuous observations, and low environmental impact to determine the ocean tide loading (OTL) displacement, which can provide a technical means to establish the ocean tide models and theory significance and reference for studying the OTL effect. In order to establish the regional OTL displacement model, the GPS kinematic precise point positioning (PPP) was used to determine the OTL displacement parameters. Three-dimensional ocean tide loading displacements of eight constituents at 11 sites in Hong Kong with eight years of continuous GPS observations are estimated. Comparing the RMS misfit of the model values, we found that the accuracy of K2 and K1 constituents are worst and the others' RMS are smaller than 2 mm. Comparing our results with the kinematic PPP and static PPP results, we found that our improved kinematic PPP can significantly improve the accuracy of K1 constituent. And the accuracy of 8 constituents derived by our method can reach the same accuracy as the kinematic PPP results, for K1 constituent, the accuracy of our method results is slightly better than the kinematic PPP results. Finally, using the least square quasi method to establish the GPS regional OTL displacement model can provide the reference for OTL effect correction in the coastal area which are lack of high accuracy local tide model.
  • [1]
    赵红, 张勤, 黄观文, 等.基于不同海潮模型研究海潮负荷对GPS精密定位的影响[J].大地测量与地球动力学, 2012, 32(5):108-112 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014249719.htm

    Zhao Hong, Zhang Qin, Huang Guanwen, et al. Effect of Ocean Tide Loading on GPS Precise Positioning Based on Different Ocean Tide Models[J]. Journal of Geodesy and Geodynamics, 2012, 32(5):108-112 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014249719.htm
    [2]
    张杰, 李斐, 楼益栋, 等.海潮负荷对GPS精密定位的影响[J].武汉大学学报·信息科学版, 2013, 38(12):1400-1404 http://ch.whu.edu.cn/CN/abstract/abstract5461.shtml

    Zhang Jie, Li Fei, Lou Yidong, et al. Ocean Tide Loading Effect on GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1400-1404 http://ch.whu.edu.cn/CN/abstract/abstract5461.shtml
    [3]
    李大炜, 李建成, 金涛勇, 等.利用验潮站资料评估全球海潮模型的精度[J].大地测量与地球动力学, 2012, 32(4):106-110 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201204025

    Li Dawei, Li Jiancheng, Jin Taoyong, et al. Accuracy Estimation of Recent Global Ocean Tide Mo-dels Using Gauge Data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4):106-110 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201204025
    [4]
    Yuan L, Ding X, Zhong P, et al. Estimates of Ocean Tide Loading Displacements and Its Impact on Position Time Series in Hong Kong Using a Dense Continuous GPS Network[J]. Journal of Geodesy, 2009, 83(11):999-1015 doi: 10.1007/s00190-009-0319-0
    [5]
    Bos M S, Penna N T, Baker T F, et al. Ocean Tide Loading Displacements in Western Europe:2. GPS-Observed Anelastic Dispersion in the Asthenosphere[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(9):6540-6557 doi: 10.1002/2015JB011884
    [6]
    Schenewerk M S, Marshall J, Dillinger W. Vertical Ocean-Loading Deformations Derived from a Global GPS Network[J]. Journal of the Geodetic Society of Japan, 2001, 47(1):237-242
    [7]
    Allinson C, Clarke P, Edwards S, et al. Stability of Direct GPS Estimates of Ocean Tide Loading[J]. Geophysical Research Letters, 2004, 31, DOI: 10.1029/2004GL020588
    [8]
    King M A, Penna N T, Clarke P J, et al. Validation of Ocean Tide Models Around Antarctica Using Onshore GPS and Gravity Data[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B8):347 doi: 10.1029/2004JB003390/pdf
    [9]
    Thomas I D, King M A, Clarke P J. A Comparison of GPS, VLBI and Model Estimates of Ocean Tide Loading Displacements[J]. Journal of Geodesy, 2007, 81(5):359-368 doi: 10.1007/s00190-006-0118-9
    [10]
    Vergnolle M, Bouin M N, Morel L, et al. GPS Estimates of Ocean Tide Loading in NW-France:Determination of Ocean Tide Loading Constituents and Comparison with a Recent Ocean Tide Model[J]. Geophysical Journal International, 2008, 173(2):444-458 doi: 10.1111/gji.2008.173.issue-2
    [11]
    Yuan Linguo, Ding Xiaoli, Sun Heping, et al. Determination of Ocean Tide Loading Displacements in Hong Kong Using GPS Technique[J]. Science China, 2010, 53(7):993-1007 doi: 10.1007/s11430-010-3076-2
    [12]
    张小红, 马兰, 李盼.利用动态PPP技术确定海潮负荷位移[J].测绘学报, 2016, 45(6):631-638 http://d.old.wanfangdata.com.cn/Periodical/chxb201606001

    Zhang Xiaohong, Ma Lan, Li Pan. Determination of Ocean Tide Loading Displacements Using Kinematic PPP[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6):631-638 http://d.old.wanfangdata.com.cn/Periodical/chxb201606001
    [13]
    Khan S A, Tscherning C C. Determination of Semi-Diurnal Ocean Tide Loading Constituents Using GPS in Alaska[J]. Geophysical Research Letters, 2001, 28(11):2249-2252 doi: 10.1029/2000GL011890
    [14]
    King M. Kinematic and Static GPS Techniques for Estimating Tidal Displacements with Application to Antarctica[J]. Journal of Geodynamics, 2006, 41(1):77-86 http://www.sciencedirect.com/science/article/pii/S0264370705001146
    [15]
    Melachroinos S A, Biancale R, Llubes M, et al. Ocean Tide Loading (OTL) Displacements from Global and Local Grids:Comparisons to GPS Estimates over the Shelf of Brittany, France[J]. Journal of Geodesy, 2008, 82(6):357-371 doi: 10.1007/s00190-007-0185-6
    [16]
    Penna N T, Clarke P J, Bos M S, et al. Ocean Tide Loading Displacements in Western Europe:1. Validation of Kinematic GPS Estimates[J]. Journal of Geophysical Research:Solid Earth, 2015, 120:6523-6539 doi: 10.1002/2015JB011882
    [17]
    刘经南, 叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报·信息科学版, 2002, 27(3):234-240 http://ch.whu.edu.cn/CN/abstract/abstract4950.shtml

    Liu Jingnan, Ye Shirong. GPS Precise Point Positioning Using Undifferenced Phase Observation[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3):234-240 http://ch.whu.edu.cn/CN/abstract/abstract4950.shtml
    [18]
    Tu R, Ge M, Zhang H, et al. The Realization and Convergence Analysis of Combined PPP Based on Raw Observation[J]. Advances in Space Research, 2013, 52(1):211-221 doi: 10.1016/j.asr.2013.03.005
    [19]
    韩保民, 欧吉坤.基于GPS非差观测值进行精密单点定位研究[J].武汉大学学报·信息科学版, 2003, 28(4):409-412 http://ch.whu.edu.cn/CN/abstract/abstract4811.shtml

    Han Baomin, Ou Jikun. Precise Point Positioning Based on Undifferenced GPS Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4):409-412 http://ch.whu.edu.cn/CN/abstract/abstract4811.shtml
    [20]
    Li W, Teunissen P, Zhang B, et al. Precise Point Positioning Using GPS and Compass Observations[C]. China Satellite Navigation Conference (CSNC), Wuhan, China, 2013
    [21]
    张小红.动态精度单点定位(PPP)的精度分析[J].全球定位系统, 2006, 31(1):7-11 doi: 10.3969/j.issn.1008-9268.2006.01.002

    Zhang Xiaohong. Analysis of the Precision of the Kinematic Point Positioning[J]. Global Positioning System, 2006, 31(1):7-11 doi: 10.3969/j.issn.1008-9268.2006.01.002
    [22]
    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):9-16 doi: 10.1029-2001JB000573/
    [23]
    Altamimi Z, Collilieux X, Legrand J, et al. ITRF2005:A New Release of the International Terrestrial Reference Frame Based on Time Series of Station Positions and Earth Orientation Parameters[J]. Journal of Geophysical Research:Solid Earth, 2007, 112, DOI: 10.1029/2007JB004949
    [24]
    Pawlowicz R, Beardsley B, Lentz S. Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T_TIDE[J]. Computers & Geosciences, 2002, 28(8):929-937 http://www.sciencedirect.com/science/article/pii/S0098300402000134
    [25]
    Hewitt E, Hewitt R E. The Gibbs-Wilbraham Phenomenon:An Episode in Fourier Analysis[J]. Archive for History of Exact Sciences, 1979, 21(2):129-160 doi: 10.1007/BF00330404
    [26]
    赵红, 张勤, 徐超.潮汐效应对香港地区GPS PPP的影响[J].大地测量与地球动力学, 2016, 36(1):6-10 http://cdmd.cnki.com.cn/Article/CDMD-10710-1016749760.htm

    Zhao Hong, Zhang Qin, Xu Chao. Analysis the Ocean Tide Loading on GPS PPP of Hong Kong[J]. Journal of Geodesy and Geodynamics, 2016, 36(1):6-10 http://cdmd.cnki.com.cn/Article/CDMD-10710-1016749760.htm
    [27]
    赵红, 张勤, 瞿伟, 等.联合中国近海海潮模型与全球海潮模型分析海潮负荷对GPS精密定位的影响[J].武汉大学学报·科学信息版, 2016, 41(6):765-771 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201606008

    Zhao Hong, Zhang Qin, Qu Wei, et al. Effect Analysis of Ocean Tide Loading on GPS Precise Positioning Combining High Precision Local Tide Model with Global Ocean Tide Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):765-771 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201606008
    [28]
    陈光, 任志良, 孙海柱.最小二乘曲线拟合及Matlab实现[J].兵工自动化, 2005, 24(3):107-108 doi: 10.3969/j.issn.1006-1576.2005.03.051

    Chen Guang, Ren Zhiliang, Sun Haizhu. Curve Fitting in Least-Square Method and Its Realization with Matlab[J]. Ordnance Industry Automation, 2005, 24(3):107-108 doi: 10.3969/j.issn.1006-1576.2005.03.051
  • Related Articles

    [1]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [2]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [3]BIAN Shaofeng, WU Zemin. Optimal Tikhonov Regularization Matrix and Its Application in GNSS Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 334-339. DOI: 10.13203/j.whugis20160474
    [4]CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728
    [5]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [6]Huang Motao, Ouyang Yongzhong, Liu Min, ZHai Guojun, Deng Kailiang. Regularization of Point-Mass Model for Multi-Source Gravity Data Fusion Processing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 170-175.
    [7]TANG Limin, ZHU Jianjun. Regularized Newton Iterative Algorithm for Poisson Model of Soft Clay Embankment Settlement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 69-73.
    [8]NING Wei, TAO Huaxue, QING Xihong. Faster Difference Iterative Algorithm of Nonlinear Data Processing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 617-620.
    [9]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
    [10]Bai Yitong. Convergence Of Iterative Solution For Nonlinear Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 92-95.
  • Cited by

    Periodical cited type(9)

    1. 张治豪,王振杰,张世美,王轲. 一种基于重心迭代法的单信标定位方法. 导航定位学报. 2024(06): 20-26 .
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 .
    3. 张建霞,曲国庆,席换,王晖. 距离观测方程非线性平差的正则化共轭梯度法. 山东理工大学学报(自然科学版). 2022(02): 42-46 .
    4. 苏晓庆,徐工. 水下应答器定位的正则化数值算法研究. 工程勘察. 2022(02): 51-57 .
    5. 苏晓庆,徐工. 海底应答器定位的Landweber算法研究. 传感器与微系统. 2022(08): 29-31+36 .
    6. 袁兴明,孙振. 超定测距定位方程参数估计的松弛重心迭代法. 全球定位系统. 2021(01): 7-12 .
    7. 张建霞,曲国庆,席换,王晖. 一种改进的病态测距方程非线性估计的正则化数值迭代法. 山东科技大学学报(自然科学版). 2021(03): 18-25 .
    8. 王乐洋,李志强. 非线性模型精度评定的Bootstrap方法及其加权采样改进方法. 测绘学报. 2021(07): 863-878 .
    9. 杨文龙,薛树强,曲国庆,王薪普,王冠宇. 测距定位方程的多解性及粒子群搜索算法. 导航定位学报. 2020(03): 121-126 .

    Other cited types(5)

Catalog

    Article views (1123) PDF downloads (269) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return