LIU Jian, LI Shulin, CHEN Tao. Landslide Susceptibility Assesment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. DOI: 10.13203/j.whugis20160515
Citation: LIU Jian, LI Shulin, CHEN Tao. Landslide Susceptibility Assesment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. DOI: 10.13203/j.whugis20160515

Landslide Susceptibility Assesment Based on Optimized Random Forest Model

Funds: 

The National High Technology Research and Development Program of China(863 Program) 2012AA121303

More Information
  • Author Bio:

    LIU Jian, PhD candidate, engineer, specializes in cloud computing and geological disaster assessment. E-mail:linefanliu@163.com

  • Corresponding author:

    LI Shulin, postgraduate. E-mail: lishulincug@gmail.com

  • Received Date: October 18, 2017
  • Published Date: July 04, 2018
  • The research area is located in Shazhenxi town and Xietan town of Three Gorges reservoir area in this paper. In order to obtain better results that discrete the continuous factors of landslide, entropy based on minimal description length principle(Ent-MDLP) method is used. To avoid the influence of correlation between factors, we calculate the Pearson correlation coefficient to remove high correlation factor. In order to obtain more accurate non-landslide sample points, the non-landslide sample points are randomly selected from the very low and low susceptible regions predicted by the entropy method. For the optimized random forests model, the optimal random features and its number are determined by iterative calculation of out-of-bag error estimation. Then the optimized random forest is evaluated for the landslide of the study area, and the landslide susceptibility level is divided. The model is compared with the methods of logistic regression, support vector machine and non-optimized random forest. The accuracy of each model is evaluated by plotting the receiver sensitivity curve of each algorithm. The optimized random forest's area is the highest, which the area under the curve is 91.8%. These show that the random forest model is optimized with more high-predictive power in landslide-prone assessment.
  • [1]
    刘阳. 延长县滑坡地质灾害风险评估和管理研究[D]. 西安: 长安大学, 2009

    Liu Yang. Extension of the County Landslide Disaster Risk Assessment and Management Research[D]. Xi'an: Chang'an University, 2009
    [2]
    许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J].岩石力学与工程学报, 2009, 28(a02):3978-3985 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z2100

    Xu Chong, Dai Fuchu, Yao Xin, et al. GIS-Based Landslide Susceptibility Assessment Using Analytical Hierarchy Process in Wenchuan Earthquake Region[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(a02):3978-3985 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2009z2100
    [3]
    罗向奎, 付旭辉.基于极限平衡法的杨家坝滑坡稳定性分析[J].山西建筑, 2009, 35(6):108-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shanxjz200906066

    Luo Xiangkui, Fu Xuhui. Landslide Stability Ana-lysis of Yangjiaba Based Upon Limit Equilibrium Method[J].Shanxi Architecture, 2009, 35(6):108-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shanxjz200906066
    [4]
    王卫东, 陈燕平, 钟晟.应用CF和Logistic回归模型编制滑坡危险性区划图[J].中南大学学报(自然科学版), 2009, 40(4):1127-1132 https://www.wenkuxiazai.com/doc/74f9d3462b160b4e767fcfb7-3.html

    Wang Weidong, Chen Yanping, Zhong Sheng. Landslides Susceptibility Mapped with CF and Logistic Regression Model[J].Journal of Central South University(Science and Technology), 2009, 40(4):1127-1132 https://www.wenkuxiazai.com/doc/74f9d3462b160b4e767fcfb7-3.html
    [5]
    王佳佳, 殷坤龙, 肖莉丽.基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J].岩石力学与工程学报, 2014, 33(4):797-808 http://dqxxkx.cn/CN/abstract/abstract40303.shtml

    Wang Jiajia, Yin Kunlong, Xiao Lili. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value:A Case Study of Wanzhou District, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4):797-808 http://dqxxkx.cn/CN/abstract/abstract40303.shtml
    [6]
    牛瑞卿, 彭令, 叶润青, 等.基于粗糙集的支持向量机滑坡易发性评价[J].吉林大学学报(地球科学版), 2012, 42(2):430-439 http://www.cqvip.com/QK/91256B/201202/41619273.html

    Niu Ruiqing, Peng Ling, Ye Runqing, et al. Landslide Susceptibility Assessment Based on Rough Sets and Support Vector Machine[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(2):430-439 http://www.cqvip.com/QK/91256B/201202/41619273.html
    [7]
    武雪玲, 任福, 牛瑞卿, 等.斜坡单元支持下的滑坡易发性评价支持向量机模型[J].武汉大学学报·信息科学版, 2013, 38(12):1499-1503 http://www.cnki.com.cn/Article/CJFDTotal-YNSK201603015.htm

    Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1499-1503 http://www.cnki.com.cn/Article/CJFDTotal-YNSK201603015.htm
    [8]
    Pradhan B. Manifestation of an Advanced Fuzzy Logic Model Coupled with Geo-information Techniques to Landslide Susceptibility Mapping and Their Comparison with Logistic Regression Modelling[J]. Environmental and Ecological Statistics, 2011, 18(3):471-493 doi: 10.1007/s10651-010-0147-7
    [9]
    曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2014

    Cao Zhengfeng. Study on Optimization of Random Forests Algorithm[D]. Beijing: Capital University of Economics and Business, 2014
    [10]
    Breiman L. Random Forests[J]. Machine Lear-ning, 2001, 45(1):5-32 doi: 10.1023/A:1010933404324
    [11]
    方匡南, 吴见彬, 朱建平, 等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38 http://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A Review of Technologies on Random Forests[J]. Statistics & Information Forum, 2011, 26(3):32-38 http://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm
    [12]
    李贞贵. 随机森林改进的若干研究[D]. 厦门: 厦门大学, 2013

    Li Zhengui. Several Research on Random Forest Improvement[D]. Xiamen: Xiamen University, 2013
    [13]
    董师师, 黄哲学.随机森林理论浅析[J].集成技术, 2013, 2(1):1-7 http://cdmd.cnki.com.cn/Article/CDMD-10559-1016734003.htm

    Dong Shishi, Huang Zhexue. A Brief Theoretical Overview of Random Forests[J].Journal of Integration Technology, 2013, 2(1):1-7 http://cdmd.cnki.com.cn/Article/CDMD-10559-1016734003.htm
    [14]
    安洲. 基于随机森林的硬盘故障预测算法的研究[D]. 天津: 南开大学, 2014

    An Zhou. Hard Drive Failure Prediction Based on Random Forest[D]. Tianjin: Nankai University, 2014
    [15]
    彭令. 三峡库区滑坡灾害风险评估研究[D]. 武汉: 中国地质大学, 2013

    Peng Ling. Landslide Risk Assessment in the Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2013
    [16]
    田正国, 程温鸣, 卢书强, 等.三峡库区滑坡崩塌发育的控制与诱发因素分析[J].资源环境与工程, 2013, 27(1):50-55 http://www.cqvip.com/QK/82916A/201301/47948282.html

    Tian Zhengguo, Cheng Wenming, Lu Shuqiang, et al. Control and Triggering Factors Analysis of Landslides and Rockfalls in the Three Gorges Re-servoir Area[J]. Resources Environment & Engineering, 2013, 27(1):50-55 http://www.cqvip.com/QK/82916A/201301/47948282.html
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (2945) PDF downloads (649) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return