YANG Jun, YAN Han. An Algorithm for Calculating Shape Correspondences Using Functional Maps by Calibrating Base Matrix of 3D Shapes[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1518-1525. DOI: 10.13203/j.whugis20160493
Citation: YANG Jun, YAN Han. An Algorithm for Calculating Shape Correspondences Using Functional Maps by Calibrating Base Matrix of 3D Shapes[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1518-1525. DOI: 10.13203/j.whugis20160493

An Algorithm for Calculating Shape Correspondences Using Functional Maps by Calibrating Base Matrix of 3D Shapes

Funds: 

The National Natural Science Foundation of China 61462059

the Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security 2013277

More Information
  • Author Bio:

    YANG Jun, PhD, professor, specializes in shape correspondence and segmentation of 3D geometric models. E-mail:yangj@mail.lzjtu.cn

  • Received Date: June 11, 2017
  • Published Date: October 04, 2018
  • A new algorithm is proposed to calibrate the base matrix between 3D geometric shapes for calculating correspondences using functional maps, in which shape correspondences can be represented as the calibration operation between the base matrices constructed by the shape eigenfunctions. First, the Laplace operators of 3D shapes are calculated to obtain eigenvectors and eigenvalues, and the basis matrix is constructed using the eigenvectors. Second, a calibration algorithm based on covariance mini-mum is proposed to calculate a calibration matrix S between shapes, and used to calibrate the basis matrices of function space of the two given shapes. Third, the Gauss curvature of all points of the source shape is calculated to sample some feature points, and traverses all points on the calibrated target model in order to find the optimal corresponding points to construct the correspondence between 3D shapes with isometric transformation (or approximate isometric transformation). Finally, the matching accuracy of the proposed algorithm is measured by calculating the geodesic error between the sampling points and the optimal points. Experiment results show that our algorithm is better than existing methods for establishing an accurate correspondence between two or more shapes, moreover, it significantly solves symmetry ambiguities problem which influence calculation of shape correspondence.
  • [1]
    van Kaick O, Zhang H, Haman G, et al. A Survey on Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(6):1681-1707 doi: 10.1111/cgf.2011.30.issue-6
    [2]
    Alexa M. Recent Advances in Mesh Morphing[J]. Computer Graphics Forum, 2002, 21(2):173-198 doi: 10.1111/cgf.2002.21.issue-2
    [3]
    Golovinskiy A, Funkhouser T. Consistent Segmen-tation of 3D Models[J]. Computers & Graphics, 2009, 33(3):262-269 https://gfx.cs.princeton.edu/pubs/Golovinskiy_2009_CSO/index.php
    [4]
    Kilian M, Mitran N J, Pottmann H. GeometricModeling in Shape Space[J]. ACM Transactions on Graphics, 2007, 26(3):1-8 doi: 10.1145/1276377
    [5]
    Jain V, Zhang H. A Spectral Approach to Shape-based Retrieval of Articulated 3D Models[J]. Computer-Aided Design, 2007, 39(5):398-407 doi: 10.1016/j.cad.2007.02.009
    [6]
    Schreiner J, Asirvatham A, Praun E, et al. Inter-surface Mapping[J]. ACM Transactions on Graphi-cs, 2004, 23(3):870-877 doi: 10.1145/1015706
    [7]
    Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-rigid Shapes[M]. Berlin, Heidelberg:Springer, 2009
    [8]
    Ruggeri M R, Patane G, Spagnuolo M, et al. Spectral-driven Isometry-invariant Matching of 3D Shapes[J]. International Journal of Computer Vision, 2010, 89(3):248-265 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.6950
    [9]
    吴维勇, 王英慧.基于扩散距离和MDS的非刚性模型相似性分析[J].计算机应用研究, 2014, 31(2):605-607 doi: 10.3969/j.issn.1001-3695.2014.02.069

    Wu Weiyong, Wang Yinghui. Approach of Similarity Analysis for Non-rigid Models Combining Diffusion Distance with MDS[J]. Application Research of Computers, 2014, 31(2):605-607 doi: 10.3969/j.issn.1001-3695.2014.02.069
    [10]
    Ovsjanikov M, Sun Jian, Guibas L. Global Intrinsic Symmetries of Shapes[J]. Computer Graphics Forum, 2008, 27(5):1341-1348 doi: 10.1111/cgf.2008.27.issue-5
    [11]
    Sahillioglu Y, Yemez Y. Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(5):1461-1470 doi: 10.1111/cgf.2011.30.issue-5
    [12]
    Sun J, Ovsjanikov M, Guibas J. A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion[J]. Computer Graphics Forum, 2009, 28(5):1383-1392 doi: 10.1111/cgf.2009.28.issue-5
    [13]
    Bronstein M, Kokkinos I. Scale-invariant Heat Kernel Signatures for Non-rigid Shape Recognition[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR'10), San Francisco, USA, 2010
    [14]
    Aubry M, Schlickewei U, Cremers D. The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis[C]. 2011 IEEE Conference on Computer Vision Workshops, Barcelona, Spain, 2011
    [15]
    Litman R, Bronstein A M. Learning Spectral Descriptors for Deformable Shape Correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):171-180 doi: 10.1109/TPAMI.2013.148
    [16]
    Ovsjanikov M, Chen M B, Solomon J, et al. Functional Maps:A Flexible Representation of Maps between Shapes[J]. ACM Transactions on Graphics, 2012, 31(4):1-11 https://www.researchgate.net/publication/254461830_Functional_Maps_A_Flexible_Representation_of_Maps_Between_Shapes
    [17]
    Ovsjanikov M, Merigot Q, Patraucean V, et al.Shape Matching via Quotient Spaces[J]. Computer Graphics Forum, 2013, 32(5):1-11 doi: 10.1111/cgf.2013.32.issue-5
    [18]
    Shtern A, Kimmel R.Matching the LBO Eigenspace of Non-rigid Shapes via High Order Statistics[J]. Axioms, 2014, 3(3):300-319 doi: 10.3390/axioms3030300
    [19]
    Wuhrer S, Xi P, Shu C. Human Shape Correspondence with Automatically Predicted Landmarks[J]. Machine Vision and Applications, 2012, 23(4):821-830 doi: 10.1007/s00138-011-0361-9
    [20]
    Allen B, Curless B, Popovic Z. The Space of Human Body Shapes:Reconstruction and Parameteri-zation from Range Scans[J]. ACM Transactions on Graphics, 2003, 22(3):587-594 doi: 10.1145/882262
    [21]
    Zhang H, Kaick O V, Dyer R. Spectral Methods for Mesh Processing and Analysis[J]. Computer Graphics Forum, 2010, 29(6):1865-1894 doi: 10.1111/j.1467-8659.2010.01655.x
    [22]
    Moore A. An Introductory Tutorial on Kd-Trees[C]. IEEE Colloquium on Quantum Computing: Theory, Applications & Implications, London, UK, 1997
    [23]
    Kim V, Lipman Y, Funkhouser T.Blended Intrinsic Maps[J]. ACM Transactions on Graphics, 2011, 30(4):76-79 https://www.researchgate.net/publication/220183824_Blended_Intrinsic_Maps
  • Related Articles

    [1]PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
    [2]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [3]WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052
    [4]YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482
    [5]LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037
    [6]LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368
    [7]WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485
    [8]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [9]Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76.
    [10]Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33.
  • Cited by

    Periodical cited type(19)

    1. 李雨森,李为乐,许强,许善淼,王运生. 2023年积石山Ms6.2级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版). 2024(01): 22-32+75 .
    2. 王乐洋,孙龙翔,许光煜. 利用GPS数据反演震源参数的单纯形组合加权距离灰狼优化算法. 武汉大学学报(信息科学版). 2024(07): 1140-1154 .
    3. 王乐洋,席灿. 贝叶斯框架下利用GPS数据反演震源参数的一种改进MCMC算法. 地球物理学报. 2024(09): 3367-3385 .
    4. 程燕,蒋亚楠,侯中健,曾锐,罗袆沅. 2016年和2022年青海门源强震活动的InSAR形变观测与区域强震危险性分析. 地质力学学报. 2024(06): 965-977 .
    5. 于仪,李雪,孙振,刘珠妹,张朝阳. 2022年青海门源地震震源机制与同震滑动分布研究. 大地测量与地球动力学. 2023(01): 46-51 .
    6. 刘洋,李航昊,熊露雲,温扬茂,杨九元. 联合地震位错模型和ESISTEM方法提取地震同震三维形变场. 武汉大学学报(信息科学版). 2023(03): 349-358+395 .
    7. 钟储汉. 基于InSAR技术的输气管道工程穿越煤矿采空区形变特征分析研究. 石油工程建设. 2023(03): 10-16 .
    8. 李媛,杨周胜,庞亚瑾,梁洪宝,刘峡. 2022年门源M_S6.9地震前断层活动及应力状态的数值模拟. 地震地质. 2023(06): 1286-1308 .
    9. 颜丙囤,季灵运,蒋锋云,殷海涛,陈其峰,连凯旋. InSAR数据约束的2022年1月8日青海门源M_S6.9地震发震构造研究. 地震工程学报. 2022(02): 450-457 .
    10. 郭东美,何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂. 武汉大学学报(信息科学版). 2022(05): 738-746 .
    11. 李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版). 2022(06): 887-897 .
    12. 何秀凤,高壮,肖儒雅,罗海滨,贾东振,章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望. 测绘学报. 2022(07): 1338-1355 .
    13. 梁斌,魏冠军. 利用InSAR技术观测台湾花莲地震断层滑动与运动机理分析. 测绘通报. 2022(09): 68-73 .
    14. 金鑫田,王世杰,姜鑫,张兰军. 2022年青海门源M_W6.9地震同震形变及断层滑动分布反演. 地球物理学进展. 2022(06): 2267-2274 .
    15. 付阿龙,安张辉,范莹莹,侯泽宇. 2022年1月8日青海门源县M_S 6.9地震地电场响应特征. 地震地磁观测与研究. 2022(06): 30-40 .
    16. 钟储汉,王强,王霞迎,张双成,牛玉芬. 基于InSAR技术的东营市地面沉降监测及多诱发因素分析. 大地测量与地球动力学. 2021(07): 727-731 .
    17. 温少妍,李成龙,李金. 2020年1月19日新疆伽师M_S6.4地震InSAR同震形变场特征及发震构造初步探讨. 内陆地震. 2020(01): 1-9 .
    18. 徐小波,连达军,白俊武. 基于CRInSAR与PSInSAR技术监测断裂带震间形变研究. 苏州科技大学学报(自然科学版). 2020(04): 51-58 .
    19. 万秀红,屠泓为,姚生海,殷翔,蔡丽雯. InSAR技术在青海地区地震中的应用研究. 高原地震. 2019(04): 14-20 .

    Other cited types(14)

Catalog

    Article views (1609) PDF downloads (265) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return