Citation: | YANG Jun, YAN Han. An Algorithm for Calculating Shape Correspondences Using Functional Maps by Calibrating Base Matrix of 3D Shapes[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1518-1525. DOI: 10.13203/j.whugis20160493 |
[1] |
van Kaick O, Zhang H, Haman G, et al. A Survey on Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(6):1681-1707 doi: 10.1111/cgf.2011.30.issue-6
|
[2] |
Alexa M. Recent Advances in Mesh Morphing[J]. Computer Graphics Forum, 2002, 21(2):173-198 doi: 10.1111/cgf.2002.21.issue-2
|
[3] |
Golovinskiy A, Funkhouser T. Consistent Segmen-tation of 3D Models[J]. Computers & Graphics, 2009, 33(3):262-269 https://gfx.cs.princeton.edu/pubs/Golovinskiy_2009_CSO/index.php
|
[4] |
Kilian M, Mitran N J, Pottmann H. GeometricModeling in Shape Space[J]. ACM Transactions on Graphics, 2007, 26(3):1-8 doi: 10.1145/1276377
|
[5] |
Jain V, Zhang H. A Spectral Approach to Shape-based Retrieval of Articulated 3D Models[J]. Computer-Aided Design, 2007, 39(5):398-407 doi: 10.1016/j.cad.2007.02.009
|
[6] |
Schreiner J, Asirvatham A, Praun E, et al. Inter-surface Mapping[J]. ACM Transactions on Graphi-cs, 2004, 23(3):870-877 doi: 10.1145/1015706
|
[7] |
Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-rigid Shapes[M]. Berlin, Heidelberg:Springer, 2009
|
[8] |
Ruggeri M R, Patane G, Spagnuolo M, et al. Spectral-driven Isometry-invariant Matching of 3D Shapes[J]. International Journal of Computer Vision, 2010, 89(3):248-265 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.6950
|
[9] |
吴维勇, 王英慧.基于扩散距离和MDS的非刚性模型相似性分析[J].计算机应用研究, 2014, 31(2):605-607 doi: 10.3969/j.issn.1001-3695.2014.02.069
Wu Weiyong, Wang Yinghui. Approach of Similarity Analysis for Non-rigid Models Combining Diffusion Distance with MDS[J]. Application Research of Computers, 2014, 31(2):605-607 doi: 10.3969/j.issn.1001-3695.2014.02.069
|
[10] |
Ovsjanikov M, Sun Jian, Guibas L. Global Intrinsic Symmetries of Shapes[J]. Computer Graphics Forum, 2008, 27(5):1341-1348 doi: 10.1111/cgf.2008.27.issue-5
|
[11] |
Sahillioglu Y, Yemez Y. Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(5):1461-1470 doi: 10.1111/cgf.2011.30.issue-5
|
[12] |
Sun J, Ovsjanikov M, Guibas J. A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion[J]. Computer Graphics Forum, 2009, 28(5):1383-1392 doi: 10.1111/cgf.2009.28.issue-5
|
[13] |
Bronstein M, Kokkinos I. Scale-invariant Heat Kernel Signatures for Non-rigid Shape Recognition[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR'10), San Francisco, USA, 2010
|
[14] |
Aubry M, Schlickewei U, Cremers D. The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis[C]. 2011 IEEE Conference on Computer Vision Workshops, Barcelona, Spain, 2011
|
[15] |
Litman R, Bronstein A M. Learning Spectral Descriptors for Deformable Shape Correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):171-180 doi: 10.1109/TPAMI.2013.148
|
[16] |
Ovsjanikov M, Chen M B, Solomon J, et al. Functional Maps:A Flexible Representation of Maps between Shapes[J]. ACM Transactions on Graphics, 2012, 31(4):1-11 https://www.researchgate.net/publication/254461830_Functional_Maps_A_Flexible_Representation_of_Maps_Between_Shapes
|
[17] |
Ovsjanikov M, Merigot Q, Patraucean V, et al.Shape Matching via Quotient Spaces[J]. Computer Graphics Forum, 2013, 32(5):1-11 doi: 10.1111/cgf.2013.32.issue-5
|
[18] |
Shtern A, Kimmel R.Matching the LBO Eigenspace of Non-rigid Shapes via High Order Statistics[J]. Axioms, 2014, 3(3):300-319 doi: 10.3390/axioms3030300
|
[19] |
Wuhrer S, Xi P, Shu C. Human Shape Correspondence with Automatically Predicted Landmarks[J]. Machine Vision and Applications, 2012, 23(4):821-830 doi: 10.1007/s00138-011-0361-9
|
[20] |
Allen B, Curless B, Popovic Z. The Space of Human Body Shapes:Reconstruction and Parameteri-zation from Range Scans[J]. ACM Transactions on Graphics, 2003, 22(3):587-594 doi: 10.1145/882262
|
[21] |
Zhang H, Kaick O V, Dyer R. Spectral Methods for Mesh Processing and Analysis[J]. Computer Graphics Forum, 2010, 29(6):1865-1894 doi: 10.1111/j.1467-8659.2010.01655.x
|
[22] |
Moore A. An Introductory Tutorial on Kd-Trees[C]. IEEE Colloquium on Quantum Computing: Theory, Applications & Implications, London, UK, 1997
|
[23] |
Kim V, Lipman Y, Funkhouser T.Blended Intrinsic Maps[J]. ACM Transactions on Graphics, 2011, 30(4):76-79 https://www.researchgate.net/publication/220183824_Blended_Intrinsic_Maps
|
[1] | PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085 |
[2] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501 |
[3] | WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052 |
[4] | YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482 |
[5] | LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037 |
[6] | LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368 |
[7] | WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485 |
[8] | XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391. |
[9] | Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76. |
[10] | Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33. |