LIU Xiaojing, GUI Zhipeng, CAO Jun, LI Rui, WU Huayi. Spatiotemporal-Aware Hybrid Prediction Model for Response Time of Web Map Services by Integrating GWR and STARMA[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 951-958. DOI: 10.13203/j.whugis20160370
Citation: LIU Xiaojing, GUI Zhipeng, CAO Jun, LI Rui, WU Huayi. Spatiotemporal-Aware Hybrid Prediction Model for Response Time of Web Map Services by Integrating GWR and STARMA[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 951-958. DOI: 10.13203/j.whugis20160370

Spatiotemporal-Aware Hybrid Prediction Model for Response Time of Web Map Services by Integrating GWR and STARMA

Funds: 

The National Natural Science Foundation of China 41501434

The National Natural Science Foundation of China 41371372

More Information
  • Author Bio:

    LIU Xiaojing, master, specializes in the quality of QoGIS. E-mail: liuxiaojing@whu.edu.cn

  • Corresponding author:

    GUI Zhipeng, PhD, associate professor. E-mail: zhipeng.gui@whu.edu.cn

  • Received Date: October 31, 2016
  • Published Date: June 04, 2018
  • As a non-functional attribute, response time is an important measurement of web service performance. Response time impacts user experience significantly and thus plays an important role in web service selection. However, response time has significantly uncertainty and is hard to predict because it is not only determined by software and hardware performance, but also affected by spatiotemporal distribution of users. In this paper, we take the OGC web map service (WMS) as an example to analyze the correlation between WMS response time and spatiotemporal factors. We collected the monitoring data of response times from thousands of WMSs using a globally distributed monitoring system we developed. Based on data analysis, we propose a hybrid spatiotemporal prediction model that takes the impact of both space and time disparities of user access into account, by integrating geographical weighted regression (GWR) and spatialtemporal auto regressive and moving average (STARMA). Specifically, GWR component simulates macro-level spatiotemporal trends in response time and the STARMA component captures local stochastic variations in spatiotemporal series. By comparing the predicated data with monitoring data from different monitoring sites and at different times, the feasibility was tested. The experimental results show that the proposed model delivers more significant predication accuracy improvement than the classical average model (AVG). The hybrid model also achieves a slight accuracy improvement over GWR and STARMA. We conclude with a discussion of the applicable scenarios of the models.
  • [1]
    Gui Z P, Yang C W, Xia J Z, et al. A Performance, Semantic and Service Quality-enhanced Distributed Search Engine for Improving Geospatial Resource Discovery[J]. International Journal of Geographical Information Science, 2013, 27(6):1109-1132 doi: 10.1080/13658816.2012.739692
    [2]
    吴华意, 章汉武.地理信息服务质量(QoGIS):概念和研究框架[J].武汉大学学报·信息科学版, 2007, 32(5):385-388 http://ch.whu.edu.cn/CN/abstract/abstract1899.shtml

    Wu Huayi, Zhang Hanwu. QoGIS:Concept and Research Framework[J]. Geomatics and Information Science of Wuhan University, 2007, 32(15):385-388 http://ch.whu.edu.cn/CN/abstract/abstract1899.shtml
    [3]
    章汉武, 吴华意, 胡月明, 等.从地理空间数据质量到地理空间信息服务质量[J].武汉大学学报·信息科学版, 2010, 35(9):1104-1107 http://ch.whu.edu.cn/CN/abstract/abstract1051.shtml

    Zhang Hanwu, Wu Huayi, Hu Yueming, et al. From Quality of Geospatial Data to Quality of Geospatial Information Service[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1104-1107 http://ch.whu.edu.cn/CN/abstract/abstract1051.shtml
    [4]
    Nah F. A Study on Tolerable Waiting Time:How Long are Web Users Willing to Wait?[J].Beha-viour & Information Technology, 2004, 23(3):153-163 http://cn.bing.com/academic/profile?id=d0b4bf2e21181acca04d55a1e18e811b&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    张继贤, 刘正军, 刘纪平.汶川大地震灾情综合地理信息遥感监测与信息服务系统[J].遥感学报, 2008, 12(6):871-876 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200806008

    Zhang Jixian, Liu Zhengjun, Liu Jiping. Remote Sensing Monitoring of the Wenchuan Earthquake Disaster Situation and the Information Service System[J]. Journal of Remote Sensing, 2008, 12(6):871-876 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200806008
    [6]
    Wu H Y, Li Z L, Zhang H W, et al. Monitoring and Evaluating the Quality of Web Map Service Resources for Optimizing Map Composition Over the Internet to Support Decision Making[J]. Computers & Geosciences, 2011, 37(4):485-494 http://cn.bing.com/academic/profile?id=a10e2b8da8433a1996545a0f886936d1&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Hai Y, Yan L H, Lu G M. Dynamic Prediction QoS-Aware Web Service Composition Model[J]. International Journal of Digital Content Technology & Its Applications, 2012, 6(12):490-498 http://cn.bing.com/academic/profile?id=1053ac3fc8929d503a6da2a173da6523&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    郑晓霞, 赵俊峰, 程志文, 等.一种Web Service响应时间的动态预测方法[J].小型微型计算机系统, 2011, 32(8):1570-1574 http://mall.cnki.net/magazine/Article/TJJC201310010.htm

    Zheng Xiaoxia, Zhao Junfeng, Cheng Zhiwen, et al. A Web Service Response Time Dynamic Prediction Approach[J]. Journal of Chinese Computer Systems, 2011, 32(8):1570-1574 http://mall.cnki.net/magazine/Article/TJJC201310010.htm
    [9]
    华哲邦, 李萌, 赵俊峰, 等.基于时间序列分析的Web Service QoS预测方法[J].计算机科学与探索, 2013, 7(3):218-226 http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_8151801

    Hua Zhebang, Li Meng, Zhao Junfeng, et al. Web Service QoS Prediction Method Based on Time Series Analysis[J]. Journal of Frontiers of Compu-ter Science and Technology, 2013, 7(3):218-226 http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_8151801
    [10]
    Yang C W, Wu H Y, Huang Q Y, et al. Using Spatial Principles to Optimize Distributed Computing for Enabling the Physical Science Discoveries[J]. Proceedings of the National Academy of Sciences, 2011, 108(14):5498-5503 doi: 10.1073/pnas.0909315108
    [11]
    Zhang X M, Feng C X, Wang G. Prediction of Website Response Time Based on Support Vector Machine[C]. Image and Signal Processing (CISP), 7th International Congress on IEEE, Dalian, China, 2014
    [12]
    Tang M D, Jiang Y C, Liu J X, et al. Location-aware Collaborative Filtering for QoS-based Service Recommendation[C]. IEEE International Conference on Web Services, Hawaii, USA, 2012
    [13]
    Yang P, Cao Y, Evans J. Web Map Server Performance and Client Design Principles[J].Mapping Science & Remote Sensing, 2007, 44(4):320-333 http://cn.bing.com/academic/profile?id=c9c696a7d516bbdb0cc399d721e21cdb&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Horáková B. Testing of Web Map Services[J].International Journal of Spatial Data Infrastructures Research, 2011, 6:257-266
    [15]
    Cibulka D. Performance Testing of Web Map Ser-vices in Three Dimensions-X, Y, Scale[J].Slovak Journal of Civil Engineering, 2013, 21(1):31-36
    [16]
    Gui Z P, Cao J, Liu X J, et al. Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services[J]. ISPRS Internatio-nal Journal of Geo-Information, 2016, 5(6):88-112 doi: 10.3390/ijgi5060088
    [17]
    游兰, 张海兵, 桂志鹏, 等.一种时区聚类协同过滤的空间信息服务质量预测[J].测绘科学, 2015, 40(5):99-105 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201505022

    You Lan, Zhang Haibing, Gui Zhipeng, et al. A Timezone Clustering Based Collaborative Filtering Approach for QoGIS Prediction[J]. Science of Surveying and Mapping, 2015, 40(5):99-105 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201505022
    [18]
    Xia J Z, Yang C W, Liu K, et al. Forming a Global Monitoring Mechanism and a Spatiotemporal Performance Model for Geospatial Services[J]. International Journal of Geographical Information Science, 2015, 29(3):1-22 http://cn.bing.com/academic/profile?id=a27c2516226ad494936805fa93e092ad&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    Cheng T, Wang J Q, Li X. A Hybrid Framework for Space Time Modeling of Environmental Data[J]. Geographical Analysis, 2011, 43(2):188-210 doi: 10.1111/j.1538-4632.2011.00813.x
    [20]
    Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression:A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4):281-298
    [21]
    Huang B, Wu B, Barry M. Geographically and Temporally Weighted Regression for Modeling Spatio-temporal Variation in House Prices[J]. International Journal of Geographical Information Science, 2010, 24(3):383-401 doi: 10.1080/13658810802672469
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return