ZHI Lu, YU Xuchu, LI Guangqiang. Spatial Point Clustering Analysis Based on the Rolling Circle[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1193-1198. DOI: 10.13203/j.whugis20160287
Citation: ZHI Lu, YU Xuchu, LI Guangqiang. Spatial Point Clustering Analysis Based on the Rolling Circle[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1193-1198. DOI: 10.13203/j.whugis20160287

Spatial Point Clustering Analysis Based on the Rolling Circle

Funds: 

The Open Research Fund Program of NASG Key Laboratory of Satellite Mapping Technology and Application KLSMTA-201603

the Open Research Fund of National Key Laboratory of Geographic Information Engineering SKLGIE-2015-M-3-2

More Information
  • Author Bio:

    ZHI Lu, PhD, specializes in spatiotemporal data mining. E-mail:zhilu_361@163.com

  • Corresponding author:

    LI Guangqiang, PhD. E-mail:ligq168@163.com

  • Received Date: November 10, 2016
  • Published Date: August 04, 2018
  • As a main tool of spatial data mining, spatial point clustering does offer interesting methods to address data effectively. At present, the study of spatial point clustering is mature and current methods may divide the initial data into different clusters. However, few methods consider geographi-cal features by linear distribution. Here, a novel spatial point clustering using the rolling circle (SPCURC) is proposed, which derives from the rolling sphere method. SPCURC uses a circle with a known radius is used to roll from the initial point to another point. The rolling does not stop until the condition is met. Then, a polygon cluster or a linear cluster will be generated with points contacted by the rolling circle.This paper also introduces the theory, the detailed calculation procedure and the algorithm complexity. In order to verify the proposed method, the simulated and actual experiments have been performed respectively. DBSCAN algorithm and hierarchical clustering method were employed as the comparative clustering methods. With two synthetic data sets, simulated experiments show that SPCURC is superior to the comparative methods in acquiring linear clusters and can get different types of clusters no matter whether the areas are low-density or high-density. With two real datasets, which contain a residential area in the south and some global seismic data, the actual experiments confirm that SPCURC has the advantages and the applicability to find the clusters that are in a linear way by comparison to DBSCAN and hierarchical clustering. The results indicate that the proposed algorithm is feasible, effective and practical providing the linear clusters and the clustering maps tallying with the initial data.
  • [1]
    李德仁, 姚远, 邵振峰.智慧城市中的大数据[J].武汉大学学报·信息科学版, 2014, 39(6):631-640 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsqbgz201306010

    Li Deren, Yao Yuan, Shao Zhenfeng. Big Data in Smart City[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):631-640 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tsqbgz201306010
    [2]
    Rashidi P, Wang T, Skidmore A, et al. Spatial and Spatiotemporal Clustering Methods for Detecting Elephant Poaching Hotspots[J]. Ecological Mode-lling, 2015, 297:180-186 doi: 10.1016/j.ecolmodel.2014.11.017
    [3]
    李光强, 邓敏, 程涛, 等.一种基于双重距离的空间聚类方法[J].测绘学报, 2008, 37(4):482-488 doi: 10.3724/SP.J.1047.2015.00638

    Li Guangqiang, Deng Min, Cheng Tao, et al. A Dual Distance Based Spatial Clustering Method[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):482-488 doi: 10.3724/SP.J.1047.2015.00638
    [4]
    邓敏, 刘启亮, 李光强.空间聚类分析及应用[M].北京:科学出版社, 2009

    Deng Min, Liu Qiliang, Li Guangqiang. Analysis and Application of Spatial Clustering[M]. Beijing:Science Press, 2009
    [5]
    Meister D, Bittner J. Parallel BVH Construction Using k-means Clustering[J]. Visual Computer, 2016, 32(6):977-987 doi: 10.1007%2Fs40745-015-0040-1
    [6]
    曾绍琴, 李光强, 廖志强.空间聚类方法的分类[J].测绘科学, 2012, 37(5):103-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyszgc201006010

    Zeng Shaoqin, Li Guangqiang, Liao Zhiqiang. A New Category of Spatial Clustering Methods[J]. Science of Surveying and Mapping, 2012, 37(5):103-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyszgc201006010
    [7]
    冯振华, 钱雪忠, 赵娜娜. Greedy DBSCAN:一种针对多密度聚类的DBSCAN改进算法[J].计算机应用研究, 2016, 33(9):2693-2696, 2700 http://mall.cnki.net/magazine/Article/RJDK201608013.htm

    Feng Zhenhua, Qian Xuezhong, Zhao Nana. Greedy DBSCAN:An Improved DBSCAN Algorithm on Multi-density Clustering[J]. Application Research of Computers, 2016, 33(9):2693-2696, 2700 http://mall.cnki.net/magazine/Article/RJDK201608013.htm
    [8]
    陈黎飞, 姜青山, 王声瑞.基于层次划分的最佳聚类数确定方法[J].软件学报, 2008, 9(1):62-72 http://d.old.wanfangdata.com.cn/Periodical/rjxb200801007

    Chen Lifei, Jiang Qingshan, Wang Shengrui. A Hierarchical Method for Determining the Number of Clusters[J]. Journal of Software, 2008, 9(1):62-72 http://d.old.wanfangdata.com.cn/Periodical/rjxb200801007
    [9]
    黄震华, 向阳, 张波, 等.一种进行k-means聚类的有效方法[J].模式识别与人工智能, 2010, 23(4):516-521 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201004011&dbname=CJFD&dbcode=CJFQ

    Huang Zhenhua, Xiang Yang, Zhang Bo, et al. An Efficient Method for k-means Clustering[J]. PR&AI, 2010, 23(4):516-521 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb201004011&dbname=CJFD&dbcode=CJFQ
    [10]
    淦文燕, 李德毅, 王建民.一种基于数据场的层次聚类方法[J].电子学报, 2006, 34(2):258-262 http://www.oalib.com/paper/5218656

    Gan Wenyan, Li Deyi, Wang Jianmin. An Hierarchical Clustering Method Based on Data Fields[J]. Acta Electronica Sinica, 2006, 34(2):258-262 http://www.oalib.com/paper/5218656
    [11]
    冯少荣, 肖文俊. DBSCAN聚类算法的研究与改进[J].中国矿业大学学报, 2008, 37(1):105-111 http://www.docin.com/p-96394502.html

    Feng Shaorong, Xiao Wenjun. An Improved DBSCAN Clustering Algorithm[J]. Jounal of China University of Mining & Technology, 2008, 37(1):105-111 http://www.docin.com/p-96394502.html
    [12]
    许虎寅, 王治和.一种改进的基于密度的聚类算法[J].微电子学与计算机, 2012, 29(2):44-47, 53 https://www.wenkuxiazai.com/doc/a95e3fe9856a561252d36f7f.html

    Xu Huyin, Wang Zhihe. An Improved Density-Based Clustering Algorithm[J]. Microelectronics & Computer, 2012, 29(2):44-47, 53 https://www.wenkuxiazai.com/doc/a95e3fe9856a561252d36f7f.html
    [13]
    Bryan W L, Silman R W. Rolling-Sphere Viscometer for In Situ Monitoring of Shake-Flask Fermentations[J]. Enzyme and Microbial Technology, 1990, 12(11):818-823 doi: 10.1016/0141-0229(90)90016-J
    [14]
    Szedenik N. Rolling Sphere-Method or Theory[J]. Journal of Electrostatics, 2001, 51-52(1):345-350 doi: 10.1007%2Fs10035-010-0196-5
    [15]
    Udwadia F E, Di Massa G. Sphere Rolling on a Moving Surface:Application of the Fundamental Equation of Constrained Motion[J]. Simulation Modelling Practice and Theory, 2011, 19(4):1118-1138 doi: 10.1016/j.simpat.2011.01.004
    [16]
    卞晓月, 武妍.基于CT图像的肺实质细分割综合方法[J].重庆邮电大学学报(自然科学版), 2010, 22(5):665-668 doi: 10.3979/j.issn.1673-825X.2010.05.028

    Bian Xiaoyue, Wu Yan. A Method of Careful Lung Segmentation Based on CT Images[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(5):665-668 doi: 10.3979/j.issn.1673-825X.2010.05.028
    [17]
    鲍海峰, 刘中华, 刘允才.数字地图局部自动生成与半自动编辑[J].计算机工程, 2003, 29(9):69-71 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgprjyyy201415075

    Bao Haifeng, Liu Zhonghua, Liu Yuncai. Automation in Local Digital Map Generation and Semi-automatic Map Editor[J]. Computer Engineering, 2003, 29(9):69-71 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgprjyyy201415075
    [18]
    张晓倩, 杨波, 王琳, 等.使用DBSCAN的FCM神经网络分类器[J].模式识别与人工智能, 2016, 29(2):185-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mssbyrgzn201602011

    Zhang Xiaoqian, Yang Bo, Wang Lin, et al. FCM Neural Network Classifier Using Density-Based Spatial Clustering of Applications with Noise[J]. PR&AI, 2016, 29(2):185-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mssbyrgzn201602011
    [19]
    刘淑芬, 孟冬雪, 王晓燕.基于网格单元的DBSCAN算法[J].吉林大学学报(工学版), 2014, 44(4):1135-1139 http://www.cqvip.com/QK/95788X/201404/50298264.html

    Liu Shufen, Meng Dongxue, Wang Xiaoyan. DBSCAN Algorithm Based on Grid Cell[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4):1135-1139 http://www.cqvip.com/QK/95788X/201404/50298264.html
    [20]
    Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, 1996
  • Related Articles

    [1]PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
    [2]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [3]WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052
    [4]YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482
    [5]LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037
    [6]LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368
    [7]WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485
    [8]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [9]Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76.
    [10]Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33.
  • Cited by

    Periodical cited type(19)

    1. 李雨森,李为乐,许强,许善淼,王运生. 2023年积石山Ms6.2级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版). 2024(01): 22-32+75 .
    2. 王乐洋,孙龙翔,许光煜. 利用GPS数据反演震源参数的单纯形组合加权距离灰狼优化算法. 武汉大学学报(信息科学版). 2024(07): 1140-1154 .
    3. 王乐洋,席灿. 贝叶斯框架下利用GPS数据反演震源参数的一种改进MCMC算法. 地球物理学报. 2024(09): 3367-3385 .
    4. 程燕,蒋亚楠,侯中健,曾锐,罗袆沅. 2016年和2022年青海门源强震活动的InSAR形变观测与区域强震危险性分析. 地质力学学报. 2024(06): 965-977 .
    5. 于仪,李雪,孙振,刘珠妹,张朝阳. 2022年青海门源地震震源机制与同震滑动分布研究. 大地测量与地球动力学. 2023(01): 46-51 .
    6. 刘洋,李航昊,熊露雲,温扬茂,杨九元. 联合地震位错模型和ESISTEM方法提取地震同震三维形变场. 武汉大学学报(信息科学版). 2023(03): 349-358+395 .
    7. 钟储汉. 基于InSAR技术的输气管道工程穿越煤矿采空区形变特征分析研究. 石油工程建设. 2023(03): 10-16 .
    8. 李媛,杨周胜,庞亚瑾,梁洪宝,刘峡. 2022年门源M_S6.9地震前断层活动及应力状态的数值模拟. 地震地质. 2023(06): 1286-1308 .
    9. 颜丙囤,季灵运,蒋锋云,殷海涛,陈其峰,连凯旋. InSAR数据约束的2022年1月8日青海门源M_S6.9地震发震构造研究. 地震工程学报. 2022(02): 450-457 .
    10. 郭东美,何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂. 武汉大学学报(信息科学版). 2022(05): 738-746 .
    11. 李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版). 2022(06): 887-897 .
    12. 何秀凤,高壮,肖儒雅,罗海滨,贾东振,章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望. 测绘学报. 2022(07): 1338-1355 .
    13. 梁斌,魏冠军. 利用InSAR技术观测台湾花莲地震断层滑动与运动机理分析. 测绘通报. 2022(09): 68-73 .
    14. 金鑫田,王世杰,姜鑫,张兰军. 2022年青海门源M_W6.9地震同震形变及断层滑动分布反演. 地球物理学进展. 2022(06): 2267-2274 .
    15. 付阿龙,安张辉,范莹莹,侯泽宇. 2022年1月8日青海门源县M_S 6.9地震地电场响应特征. 地震地磁观测与研究. 2022(06): 30-40 .
    16. 钟储汉,王强,王霞迎,张双成,牛玉芬. 基于InSAR技术的东营市地面沉降监测及多诱发因素分析. 大地测量与地球动力学. 2021(07): 727-731 .
    17. 温少妍,李成龙,李金. 2020年1月19日新疆伽师M_S6.4地震InSAR同震形变场特征及发震构造初步探讨. 内陆地震. 2020(01): 1-9 .
    18. 徐小波,连达军,白俊武. 基于CRInSAR与PSInSAR技术监测断裂带震间形变研究. 苏州科技大学学报(自然科学版). 2020(04): 51-58 .
    19. 万秀红,屠泓为,姚生海,殷翔,蔡丽雯. InSAR技术在青海地区地震中的应用研究. 高原地震. 2019(04): 14-20 .

    Other cited types(14)

Catalog

    Article views (1538) PDF downloads (383) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return