MA Chao, SUN Qun, CHEN Huanxin, WEN Bowei. Recognition of Road Junctions Based on Road Classification Method[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1232-1237. DOI: 10.13203/j.whugis20160073
Citation: MA Chao, SUN Qun, CHEN Huanxin, WEN Bowei. Recognition of Road Junctions Based on Road Classification Method[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1232-1237. DOI: 10.13203/j.whugis20160073

Recognition of Road Junctions Based on Road Classification Method

Funds: 

The National 863 Program of China 2012AA12A404

the National Natural Science Foundation of China 41571399

the National Natural Science Foundation of China 41201391

the National Natural Science Foundation of China 41071297

the National Natural Science Foundation of China 41201469

More Information
  • Author Bio:

    MA Chao, PhD candidate, specializes in multi-sourced spatial data fusion and digital mapping. E-mail: jielong018@126.com

  • Received Date: February 28, 2016
  • Published Date: September 04, 2016
  • The recognition of microstructures such as road junctions in road networks is of importance for multi-scale road modeling and pedestrian navigation. Aiming to resolve deficiencies in the current recognition methodsfor geometric shape description and shape matching with complex road junctions, the paper presents a road junction recognition method based on the classification of roads and starting with recognition and reduction. Firstly, junctions are located by the node cluster density detection. Then the characteristic vectors are built by analyzing and quantifying the sizes, shapes, and attributes of roads; treating this issue as a two-class classification problem for differentiating main roads and the auxiliary sections, solved by using a support vector machine. Using Open Street Map data for experimental verification, our results show that this method can effectively recognize road junctions.
  • [1]
    李清泉, 萧世伦, 方志祥, 等.交通地理信息系统技术与前沿发展[M].北京:科学出版社, 2012

    Li Qingquan, Shaw Shihlung, Fang Zhixiang. Technologies and Frontier Development of Transportation Geographic Information System[M]. Beijing: Science Press, 2012
    [2]
    Meng Yanzi. A Structural Approach to the Recognition and Simplification of Road Junctions[D]. Chengdu: Southwest Jiaotong University, 2009
    [3]
    Yang Bisheng, Luan Xuechen, Li Qingquan. An Adaptive Method for Identifying the Spatial Patterns in Road Nerworks[J]. Computers, Environment and Urban Systems, 2010, 34: 40-48 doi: 10.1016/j.compenvurbsys.2009.10.002
    [4]
    翟仁建.基于全局一致性评价的多尺度矢量空间数据匹配方法研究[D].郑州:信息工程大学, 2011 http://www.cnki.com.cn/article/cjfdtotal-dnzs200934069.htm

    Zhai Renjian. Research on Automated Matching Methods for Multi-Scale Vector Spatial Data Based on Global Consistency Evaluation[D]. Zhengzhou: Information Engineering University, 2011 http://www.cnki.com.cn/article/cjfdtotal-dnzs200934069.htm
    [5]
    Luan Xuechen. Methods for Modeling Levels-of-Detail Road Networks with the Maintenance of Structural Patterns[D]. Wuhan: Wuhan University, 2013
    [6]
    栾学晨, 杨必胜, 李秋萍.基于结构模式的道路网节点匹配方法[J].测绘学报, 2013, 42(4): 608-614 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201304023.htm

    Luan Xuechen, Yang Bisheng, Li Qiuping. Pattern-based Node Matching Approach for Road Networks[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4): 608-614 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201304023.htm
    [7]
    Mackaness W A, Mackechine G A. Automating the Detection and Simplication of Junctions in Road Networks[J]. GeoInformatica, 1999, 3(2): 185-200 doi: 10.1023/A:1009807927991
    [8]
    徐柱, 蒙艳姿, 李志林.基于有向属性关系图的典型道路交叉口结构识别方法[J].测绘学报, 2011, 40(1): 125-131 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101026.htm

    Xu Zhu, Meng Yanzhi, Li Zhilin. Recognition of Structures of Typical Road Junctions Based on Diredted Attributed Relational Graph[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 125-131 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101026.htm
    [9]
    Scheider S, Possin J. Affordance-Based Individuation of Junctions in Open Street Map[J]. Journal of Spatial Information Science, 2012(4): 31-56 http://cn.bing.com/academic/profile?id=2098775955&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    王骁, 钱海忠, 丁雅莉, 等.采用拓扑关系与道路分类的立交桥整体识别方法[J].测绘科学技术学报, 2013, 30(3): 109-113 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201303022.htm

    Wang Xiao, Qian Haizhong, Ding Yali, et al. The Integral Identification Method of Cloverleaf Junction Based on Topology and Road Classification[J]. Journal of Geomaticas Science and Technology, 2013, 30(3): 109-113 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201303022.htm
    [11]
    栾学晨, 范红超, 杨必胜, 等.城市道路网主干道提取的形态分析方法[J].武汉大学学报(信息科学版), 2014, 39(3): 327-331 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403016.htm

    Luan Xuechen, Fan Hongchao, Yang Bisheng, et al. Arterial Roads Extraction in Urban Road Networks Based on Shape Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 327-331 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403016.htm
    [12]
    陈孝春, 叶懋冬, 倪臣敏.基于二叉树的曲线描述方法[J].中国图象图形学报, 2007, 12(1): 116-120 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200701020.htm

    Chen Xiaochun, Ye Maodong, Ni Chenmin. A Method for Curve Representation Based on Binary Tree[J]. Journal of Image and Graphics, 2007, 12(1): 116-120 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200701020.htm
    [13]
    邓乃扬, 田英杰.支持向量机—理论、算法与拓展[M].北京:科学出版社, 2009

    Deng Naiyang, Tian Yingjie. Support Vector Matchines: Theory, Algorithm and Extention[M]. Beijing: Science Press, 2009
  • Related Articles

    [1]XU Shenghua, LIU Jiping, WANG Xianghong, ZHANG Yu, LIN Rongfu, ZHANG Meng, LIU Mengmeng, JIANG Tao. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1214-1222. DOI: 10.13203/j.whugis20200109
    [2]DUAN Peixiang, QIAN Haizhong, HE Haiwei, XIE Limin, LUO Denghan. A Line Simplification Method Based on Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 744-752, 783. DOI: 10.13203/j.whugis20180434
    [3]TIAN Wenzhe, FU Randi, JIN Wei, LIU Zhen, YIN Caoqian. Adaptive Fuzzy Support Vector Machine for Classification of Clouds in Satellite Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 488-495. DOI: 10.13203/j.whugis20140734
    [4]WU Xueling, REN Fu, NIU Ruiqing, PENG Ling. Landslide Spatial Prediction Based on SlopeUnits and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1499-1503.
    [5]WU Zhaocong, OUYANG Qundong, HU Zhongwen. Polarimetric SAR Image Classification Using Watershed-Transformation and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 7-10.
    [6]TAN Kun, DU Peijun, WANG Xiaomei. Multi-Class Support Vector Machine Classifier Based on Separability Measure for Hyperspectral Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 171-175.
    [7]FAN Qian, HUA Xianghong. A Novel Method for Forecasting Landslide Displacement Based on Phase Space Reconstruction and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 248-251.
    [8]WANG Xinzhou, FAN Qian, XU Chengquan, LI Zhao. Dam Deformation Prediction Based on Wavelet Transform and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 469-471.
    [9]MEI Jianxin, DUAN Shan, QIN Qianqing. Method for Special Targets Detection Based on Support Ector Machines[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 912-915,932.
    [10]XU Fang, YAN Qin. Texture Classification of Aerial Images Based on Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 517-520.
  • Cited by

    Periodical cited type(11)

    1. 胡蓉,韩宇,徐永,许伟辉,李诚. 基于深度学习的交通路口自动识别. 福州大学学报(自然科学版). 2022(05): 602-608 .
    2. 邵小美,张春亢,韦永昱,张显云,周成宇,张忠豪. 改进YOLOv3算法的遥感图像道路交叉口自动识别. 航天返回与遥感. 2022(05): 123-132 .
    3. 马京振,陈换新,朱新铭,张付兵. 利用Faster R-CNN进行立交桥自动识别与定位. 测绘通报. 2021(03): 28-32+86 .
    4. 陆川伟,孙群,季晓林,徐立,温伯威,程绵绵. 一种基于核距离的车辆轨迹点聚类方法. 武汉大学学报(信息科学版). 2020(07): 1082-1088 .
    5. 张鸿刚,李成名,武鹏达,殷勇,郭曼. GoogLeNet神经网络的复杂交叉路口识别方法. 测绘科学. 2020(10): 190-197 .
    6. 张鸿刚,李成名,于美娜,武鹏达,郭曼. 多特征约束下的复杂交叉路口主辅路识别. 测绘通报. 2020(10): 21-25+42 .
    7. 孙卫真,邱皓月,向勇,张禹. 低采样率浮动车的路况计算精度优化. 小型微型计算机系统. 2019(03): 676-682 .
    8. 何海威,钱海忠,谢丽敏,段佩祥. 立交桥识别的CNN卷积神经网络法. 测绘学报. 2018(03): 385-395 .
    9. 周凯,赵彬彬,刘泉菲,王安. 道路交叉口拓扑不一致性的描述、表达、探测及处理. 长沙理工大学学报(自然科学版). 2018(01): 49-56 .
    10. 崔晓杰,王家耀,巩现勇,武芳. 基于改进霍夫变换的环形交叉口识别方法. 测绘学报. 2018(12): 1670-1679 .
    11. 马超,孙群,陈换新,徐青,杨辉. 志愿者地理信息中天桥的自动识别方法. 测绘学报. 2017(02): 246-252 .

    Other cited types(12)

Catalog

    Article views (2575) PDF downloads (499) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return