Citation: | DUAN Peixiang, QIAN Haizhong, HE Haiwei, XIE Limin, LUO Denghan. A Line Simplification Method Based on Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 744-752, 783. DOI: 10.13203/j.whugis20180434 |
[1] |
郭庆胜.地图自动综合理论与方法[M].北京:测绘出版社, 2002
Guo Qingsheng. Theory and Method of Automatic Map Generalization[M]. Beijing:Surveying and Mapping Press, 2002
|
[2] |
王家耀.普通地图制图综合原理[M].北京:测绘出版社, 1993
Wang Jiayao. Principles of Cartographic Generalization of Map[M]. Beijing:Surveying and Mapping Press, 1993
|
[3] |
Douglas D H, Peucker T K. Algorithms for the Reduction of Points Required to Represent a Digitized Line or Its Caricature[J]. Canadian Cartographer, 1993, 10:112-122 http://d.old.wanfangdata.com.cn/Periodical/jsjyy2009z2100
|
[4] |
Li Zhilin, Openshaw S. Algorithms for Objective Generalization of Line Features Based on the Natural Principle[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389 doi: 10.1080/02693799208901921
|
[5] |
Nakos B, Mitropoulos V. Local Length Ratio as a Measure of Critical Point Detection for Line Simplification[R]. Symposium of the 5th ICA Workshop on Progress in Automated Map Generalization, Paris, France, 2003
|
[6] |
Teh C H, Chin R T. On the Detection of Dominant Points on Digital Curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 11(8):859-872 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e0d12ffff31416a510cb41b0aeec8e29
|
[7] |
Chrobak T. A Numerical Method for Generalizing the Linear Elements of Large-Scale Maps, Based on the Example of Rivers[J]. Cartographica:The International Journal for Geographic Information & Geovisualization, 2000, 37(1):49-56 https://www.researchgate.net/publication/270056786_A_Numerical_Method_for_Generalizing_the_Linear_Elements_of_Large-Scale_Maps_Based_on_the_Example_of_Rivers
|
[8] |
朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J].测绘学报, 2007, 36(4):450-456 doi: 10.3321/j.issn:1001-1595.2007.04.015
Zhu Kunpeng, Wu Fang, Wang Huilian, et al. Improvement and Assessment of Li-Openshaw Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):450-456 doi: 10.3321/j.issn:1001-1595.2007.04.015
|
[9] |
刘慧敏, 樊子德, 徐震, 等.曲线化简的弧比弦算法改进及其评价[J].地理与地理信息科学, 2011, 27(1):45-48 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201101011
Liu Huimin, Fan Zide, Xu Zhen, et al. An Improved Local Length Ratio Method for Curve Simplification and Its Evaluation[J]. Geography and Geo-information Science, 2011, 27(1):45-48 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201101011
|
[10] |
邓敏, 陈杰, 李志林, 等.曲线简化中节点重要性度量方法比较及垂比弦法的改进[J].地理与地理信息科学, 2009, 25(1):40-43 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj200901011
Deng Min, Chen Jie, Li Zhilin, et al. An Improved Local Measure Method for the Importance of Vertices in Curve Simplification[J]. Geography and Geo-information Science, 2009, 25(1):40-43 http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj200901011
|
[11] |
张青年, 廖克.基于结构分析的曲线概括方法[J].中山大学学报(自然科学版), 2001, 40(5):118-121 doi: 10.3321/j.issn:0529-6579.2001.05.030
Zhang Qingnian, Liao Ke. Line Generalization Based on Structure Analysis[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2001, 40(5):118-121 doi: 10.3321/j.issn:0529-6579.2001.05.030
|
[12] |
钱海忠, 武芳, 陈波, 等.采用斜拉式弯曲划分的曲线化简方法[J].测绘学报, 2007, 36(4):443-449, 456 doi: 10.3321/j.issn:1001-1595.2007.04.014
Qian Haizhong, Wu Fang, Chen Bo, et al. Simplifying Line with Oblique Dividing Curve Method[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):443-449, 456 doi: 10.3321/j.issn:1001-1595.2007.04.014
|
[13] |
黄博华, 武芳, 翟仁健, 等.保持弯曲特征的线要素化简算法[J].测绘科学技术学报, 2014, 31(5):533-537 doi: 10.3969/j.issn.1673-6338.2014.05.020
Huang Bohua, Wu Fang, Zhai Renjian, et al. The Line Feature Simplification Algorithm Preserving Curve Bend Feature[J]. Journal of Geomatics Science and Technology, 2014, 31(5):533-537 doi: 10.3969/j.issn.1673-6338.2014.05.020
|
[14] |
钱海忠, 何海威, 王骁, 等.采用三元弯曲组划分的线要素化简方法[J].武汉大学学报·信息科学版, 2017, 42(8):1096-1103 http://ch.whu.edu.cn/CN/abstract/abstract5802.shtml
Qian Haizhong, He Haiwei, Wang Xiao, et al. Line Feature Simplification Method Based on Bend Group Division[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1096-1103 http://ch.whu.edu.cn/CN/abstract/abstract5802.shtml
|
[15] |
武芳, 邓红艳.基于遗传算法的线要素自动化简模型[J].测绘学报, 2003, 32(4):349-355 doi: 10.3321/j.issn:1001-1595.2003.04.013
Wu Fang, Deng Hongyan. Using Genetic Algorithm for Solving Problems in Automated Line Simplification[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(4):349-355 doi: 10.3321/j.issn:1001-1595.2003.04.013
|
[16] |
Jiang B, Nakos B.Line Simplification Using Self-Organizing Maps[R].ISPRS Workshop on Spatial Analysis and Decision Making, Hong Kong, China, 2003
|
[17] |
钱海忠, 武芳, 王家耀.自动制图综合及其过程控制的智能化研究[M].北京:测绘出版社, 2012
Qian Haizhong, Wu Fang, Wang Jiayao. Study of Automated Cartographic Generalization and Intelligentized Generalization Process Control[M]. Beijing:Surveying and Mapping Press, 2012
|
[18] |
何海威, 钱海忠, 刘闯, 等.案例推理的制图综合应用背景与方法[J].测绘科学技术学报, 2017, 34(4):427-432 http://d.old.wanfangdata.com.cn/Periodical/chxyxb201704018
He Haiwei, Qian Haizhong, Liu Chuang, et al. Application Background and Method of Case Based Reasoning in Cartographic Generalization[J]. Journal of Geomatics Science and Technology, 2017, 34(4):427-432 http://d.old.wanfangdata.com.cn/Periodical/chxyxb201704018
|
[19] |
毋河海.数字曲线拐点的自动确定[J].武汉大学学报·信息科学版, 2003, 28(3):330-335 http://ch.whu.edu.cn/CN/abstract/abstract4830.shtml
Wu Hehai. Automatic Determination of Inflection Point and Its Application[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3):330-335 http://ch.whu.edu.cn/CN/abstract/abstract4830.shtml
|
[20] |
Wang Zeshen, Muller J C. Line Generalization Based on Analysis of Shape Characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1):3-15 doi: 10.1559/152304098782441750
|
[21] |
郭庆胜, 黄远林, 章莉萍.曲线的弯曲识别方法研究[J].武汉大学学报·信息科学版, 2008, 33(6):596-599 http://ch.whu.edu.cn/CN/abstract/abstract1620.shtml
Guo Qingsheng, Huang Yuanlin, Zhang Liping. The Method of Curve Bend Recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):596-599 http://ch.whu.edu.cn/CN/abstract/abstract1620.shtml
|
[22] |
武芳, 朱鲲鹏.线要素化简算法几何精度评估[J].武汉大学学报·信息科学版, 2008, 33(6):600-603 http://ch.whu.edu.cn/CN/abstract/abstract1621.shtml
Wu Fang, Zhu Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):600-603 http://ch.whu.edu.cn/CN/abstract/abstract1621.shtml
|
[1] | XU Shenghua, LIU Jiping, WANG Xianghong, ZHANG Yu, LIN Rongfu, ZHANG Meng, LIU Mengmeng, JIANG Tao. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1214-1222. DOI: 10.13203/j.whugis20200109 |
[2] | TIAN Wenzhe, FU Randi, JIN Wei, LIU Zhen, YIN Caoqian. Adaptive Fuzzy Support Vector Machine for Classification of Clouds in Satellite Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 488-495. DOI: 10.13203/j.whugis20140734 |
[3] | WU Xueling, REN Fu, NIU Ruiqing, PENG Ling. Landslide Spatial Prediction Based on SlopeUnits and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1499-1503. |
[4] | WU Zhaocong, OUYANG Qundong, HU Zhongwen. Polarimetric SAR Image Classification Using Watershed-Transformation and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 7-10. |
[5] | FAN Qian, HUA Xianghong. A Novel Method for Forecasting Landslide Displacement Based on Phase Space Reconstruction and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 248-251. |
[6] | DENG Xingsheng, HUA Xianghong. Learning Algorithm of Dynamic Least Square Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1122-1125. |
[7] | WANG Xinzhou, FAN Qian, XU Chengquan, LI Zhao. Dam Deformation Prediction Based on Wavelet Transform and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 469-471. |
[8] | XU Fang, MEI Wensheng, ZHANG Zhihua. Least Squares Support Vector Machines for Aerial Images Segmentation[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 694-698. |
[9] | MEI Jianxin, DUAN Shan, QIN Qianqing. Method for Special Targets Detection Based on Support Ector Machines[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 912-915,932. |
[10] | XU Fang, YAN Qin. Texture Classification of Aerial Images Based on Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 517-520. |