Citation: | LIU Wenxuan, QI Kunlun, WU Baiyan, WU Huayi. High Resolution Remote Sensing Image Classification Using Multitask Joint Sparseand Low-rank Representation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 297-303. DOI: 10.13203/j.whugis20160044 |
[1] |
Eismann M T, Stocker A D, Nasrabadi N M. Automated Hyperspectral Cueing for Civilian Search and Rescue[J]. Proceedings of IEEE, 2009, 97(6):1031-1055 doi: 10.1109/JPROC.2009.2013561
|
[2] |
GoelP K, PrasherS O, PatelR M, et al. Classification of Hyperspectral Data by Decision Trees and Artificial Neural Networks to Identify Weed Stress and Nitrogen Status of Corn[J]. Computers and Electronics in Agriculture, 2003, 39(2):67-93 doi: 10.1016/S0168-1699(03)00020-6
|
[3] |
Iordache M D, Bioucas-DiasJ M, Plaza A. Sparse Unmixing of Hyperspectral Data[J]. IEEE Transactions Geoscience and Remote Sensing, 2011, 49(6):2014-2039 doi: 10.1109/TGRS.2010.2098413
|
[4] |
Qi K, Wu H, Shen C, et al. Land-Use Scene Classification in High-Resolution Remote Sensing Images Using Improved Correlatons[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2403-2407 doi: 10.1109/LGRS.2015.2478966
|
[5] |
张倩, 黄昕, 张良培.多尺度同质区域提取的高分辨率遥感影像分类研究[J].武汉大学学报·信息科学版, 2011, 36(1):117-121 http://ch.whu.edu.cn/CN/abstract/abstract433.shtml
Zhang Q, Huang X, Zhang L. Multiscale Images Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):117-121 http://ch.whu.edu.cn/CN/abstract/abstract433.shtml
|
[6] |
程诗尧, 梅天灿, 刘国英.顾及结构特征的多层次马尔科夫随机场模型在影像分类中的应用[J].武汉大学学报·信息科学版, 2015, 40(9):1180-1187 http://ch.whu.edu.cn/CN/abstract/abstract3318.shtml
Cheng Shiyao, Mei Tiancan, Liu Guoying. Application of Multi-level MRF Using Structural Feature to Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1180-1187 http://ch.whu.edu.cn/CN/abstract/abstract3318.shtml
|
[7] |
徐侃, 杨文, 陈丽君, 等.利用主题模型的遥感图像场景分类[J].武汉大学学报·信息科学版, 2011, 36(5):540-543 http://ch.whu.edu.cn/CN/abstract/abstract553.shtml
Xu Kan, Yang Wen, Chen Lijun, et al. Satellite Image Scene Categorization Based on Topic Models[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):540-543 http://ch.whu.edu.cn/CN/abstract/abstract553.shtml
|
[8] |
Caruana R. Multitask Learning[J]. Machine Learning, 1997, 28(1):41-75 doi: 10.1023/A:1007379606734
|
[9] |
浦剑. 多任务学习算法研究[D]. 上海: 复旦大学, 2013
Pu Jian. On Multitask Learning Methods[D]. Shanghai: Fudan University, 2013
|
[10] |
Yuan X, Liu X, Yan S. Visual Classification with Multitask Joint Sparse Representation[J]. IEEE Transactions on Image Processing, 2012, 21(10):4349-4360 doi: 10.1109/TIP.2012.2205006
|
[11] |
Leiva-MurilloJ M, Gómez-Chova L, Camps-Valls G. Multitask Remote Sensing Data Classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(1):151-161 doi: 10.1117/12.865045.pdf
|
[12] |
俞斌峰. 多任务学习及其在光谱数据分析中的应用[D]. 合肥: 中国科学技术大学, 2015
Yu Binfeng. Multitask LearningandIts Application in Spectral Multivariate Calibration[D]. Hefei: University of Science and Technology of China, 2015
|
[13] |
Zhang C, Liu J, Tian Q, et al. Image Classification by Non-negative Sparse Coding, Low-rank and Sparse Decomposition[C]. IEEE Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011
|
[14] |
Chen J, Zhou J, Ye J. Integrating Low-rank and Group-sparse Structures for Robust Multi-task Learning[C]. International Conference on Knowledge Discovery and Data Mining, San Diego, USA, 2011
|
[15] |
Zhang T, Ghanem B, Liu B, et al. Low-Rank Sparse Coding for Image Classification[C]. IEEE International Conference on Computer Vision, Sydney, Australia, 2013
|
[16] |
Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227 doi: 10.1109/TPAMI.2008.79
|
[17] |
Obozinski G, Taskar B, Jordan M. Joint Covariate Selection and Joint Subspace Selection for Multiple Classification Problems[J]. Statistics and Computing, 2009, 20(2):231-252 doi: 10.1007/s11222-008-9111-x
|
[18] |
Lin Y, Liu T, Fuh C. Local Ensemble Kernel Learning for Object Category Recognition[C]. IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007
|
[19] |
Nesterov Y. Introductory Lectures on Convex Optimization:A Basic Course[M]. New York:Kluwer Academic Publishers, 2004
|
[20] |
Beck A, Teboulle M. A Fast Iterative Shrinkage-thresholding Algorithm for Linear Inverse Problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202 doi: 10.1137/080716542
|
[21] |
Mei S, Cao B, Sun J. Encoding Low-Rank and Sparse Structures Simultaneously in Multi-task Learning[J]. Microsoft Technical Report, 2012, 124(1):1-16
|
[22] |
Ji S, Ye J. An Accelerated Gradient Method for Trace Norm Minimization[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009
|
[23] |
Chen X, Pan W, Kwok J T, et al. Accelerated Gradient Method for Multi-task Sparse Learning Problem[C]. The 9th IEEE International Conference on Data Mining, Las Vegas, USA, 2009
|
[24] |
Yang Y, Newsam S. Bag-of-visual-words and Spatial Extensions for Land-use Classification[C]. The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010
|
[25] |
Berg A C, Malik J. Geometric Blur for Template Matching[C]. IEEE Computer Vision and Pattern Recognition, Hawaii, USA, 2001
|
[26] |
Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]. IEEE Computer Vision and Pattern Recognition, New York, USA, 2006
|
[27] |
Shechtman E, Irani M. Matching Local Self-similarities Across Images and Videos[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007
|
[1] | DONG Yanni, QIN Xuexiang, ZHANG Yuxiang, DU Bo. Balanced Metric Learning in Multilevel Spatial Features for Domain Adaptation in Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240212 |
[2] | XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084 |
[3] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[4] | ZHENG Zhaobao, ZHENG Hong. Image Classification Based on Data Gravitation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1604-1607. DOI: 10.13203/j.whugis20160457 |
[5] | WU Yiquan, TAO Feixiang, CAO Zhaoqing. Remote Sensing Image Classification Based on Log-Gabor Wavelet and Krawtchouk Moments[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 861-867. DOI: 10.13203/j.whugis20140234 |
[6] | ZHENG Zhaobao, ZHENG Hong. Fuzzy Image Classification with a Certain Degree[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 482-486. DOI: 10.13203/j.whugis20150712 |
[7] | ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736 |
[8] | XU Kai, QIN Kun, LIU Xiuguo, LI Dengchao. Pan-concept-level Generation Method and Its Application in Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1078-1082. |
[9] | LI Deren, NING Xiaogang. A New Image Decomposition Method for Content-Based Remote Sensing Image Retrieval[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 659-662. |
[10] | LUO Hongxia, GONG Jianya. Effect Analysis of UFCLS Linear Spectral Mixture Analysis Method on Classification of Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 615-618. |