LAN Xia, LIU Xinxin, SHEN Huanfeng, YUAN Qiangqiang, ZHANG Liangpei. A Novel Median Filter to Iteratively Remove Salt-and-Pepper Noise from Highly Corrupted Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1731-1737. DOI: 10.13203/j.whugis20150520
Citation: LAN Xia, LIU Xinxin, SHEN Huanfeng, YUAN Qiangqiang, ZHANG Liangpei. A Novel Median Filter to Iteratively Remove Salt-and-Pepper Noise from Highly Corrupted Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1731-1737. DOI: 10.13203/j.whugis20150520

A Novel Median Filter to Iteratively Remove Salt-and-Pepper Noise from Highly Corrupted Images

Funds: 

The National Natural Science Foundation of China 41401383

The National Natural Science Foundation of China 41401396

More Information
  • Author Bio:

    LAN Xia, PhD, specializes in signal and information processing. E-mail: lanxia2004@163.com

  • Corresponding author:

    SHEN Huanfeng, PhD, professor. E-mail: shenhf@whu.edu.cn

  • Received Date: July 26, 2016
  • Published Date: December 04, 2017
  • In this paper, we propose a simple but efficient filter to effectively remove salt-and-pepper noise from highly corrupted images inspired by the corresponding limitations of existing filtering methods. After ensuring the location of ill pixels based on their intensity value, our method then utilizes the iterative processing framework to gradually restore the noisy images. When the useful information of one corrupted image is much enough, the proposed method can refine the results through particular designed criterion. The experiments from standard test images show that the proposed method can better recover the detail information and maintain the optimal performances qualitatively and quantitatively in the comparisons. Even the ratio of salt-and-pepper noise is as high as 95%, the advantage of our filter is still significant.
  • [1]
    Bovik A. Handbook of Image and Processing[M]. New York:Academic Press, 2000
    [2]
    Rosenfeld A, Woods R E. Digital Picture Processing[M]. New York:Academic Press, 1982
    [3]
    Nodes T, Gallagher N C. The Output Distribution of Median Type Filters[J]. IEEE Transactions on Communications, 1984, 32(5):532-541 doi: 10.1109/TCOM.1984.1096099
    [4]
    Brownrigg D. The Weighted Median Filter[J]. Communications of the ACM, 1984, 27(8):807-818 doi: 10.1145/358198.358222
    [5]
    Ko S J, Lee Y H. Center Weighted Median Filters and Their Applications to Image Enhancement[J]. IEEE Transactions on Circuits & Systems, 1991, 38(9):984-993 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=83870&contentType=Journals+%26+Magazines&punumber%3D31
    [6]
    Abreu E, Lightstone M, Mitra S K, et al. A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Image Processing, 1996, 5(6):1012-1025 doi: 10.1109/83.503916
    [7]
    Sun T, Neuvo Y. Detail-Preserving Median Based Filters in Image Processing[J]. Pattern Recognition Letters, 1994, 15(4):341-347 doi: 10.1016/0167-8655(94)90082-5
    [8]
    李树涛, 王耀南.图象椒盐噪声的非线性自适应滤除[J].中国图象图形学报, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004

    Li Shutao, Wang Yaonan. Non-Linear Adaptive Removal of Salt and Pepper Noise from Images[J]. Journal of Image and Graphics, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004
    [9]
    邢藏菊, 王守觉, 邓浩江, 等.一种基于极值中值的新型滤波算法[J].中国图象图形学报, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html

    Xing Cangju, Wang Shoujue, Deng Haojiang, et al. A New Filtering Algorithm Based on Extremum and Median Value[J]. Journal of Image and Graphics, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html
    [10]
    Zhang S, Karim M A. A New Impulse Noise Detector for Switching Median Filters[J]. IEEE Signal Processing Letters, 2002, 9(11):360-363 doi: 10.1109/LSP.2002.805310
    [11]
    Chan R H, Ho C W, Nikolova M. Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail Preserving Regularization[J]. IEEE Transactions on Signal Processing, 2005, 14(10):1479-1485 http://ci.nii.ac.jp/naid/80017549968
    [12]
    Srinivasan K S, Ebenezer D. A New Fast and Efficient Decision-Based on Algorithm for Removal of High-Density Impulse Noise[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192 doi: 10.1109/LSP.2006.884018
    [13]
    Ibrahim H, Kong N S P, Ng T F. Simple Adaptive Median Filter for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4):1920-1927 doi: 10.1109/TCE.2008.4711254
    [14]
    Wang Z, Zhang D. Progressive Switching Median Filter for the Removal Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Circuits and Systems Ⅱ Analog & Digital Signal Processing, 1999, 46(1):78-80 http://citeseerx.ist.psu.edu/showciting?cid=260222
    [15]
    Ahmed F, Das S. Removal of High-Density Salt-and-Pepper Noise in Images with an Iterative Adaptive Fuzzy Filter Using Alpha-Trimmed Mean[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5):1352-1358 doi: 10.1109/TFUZZ.2013.2286634
    [16]
    Bhadouria V S, Ghoshal D, Siddiqi A H. A New Approach for High Density Saturated Impulse Noise Removal Using Decision-Based Coupled Window Median Filter[J]. Signal Image and Video Processing, 2014, 8(1):71-84 doi: 10.1007/s11760-013-0487-5
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return