Citation: | LAN Xia, LIU Xinxin, SHEN Huanfeng, YUAN Qiangqiang, ZHANG Liangpei. A Novel Median Filter to Iteratively Remove Salt-and-Pepper Noise from Highly Corrupted Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1731-1737. DOI: 10.13203/j.whugis20150520 |
[1] |
Bovik A. Handbook of Image and Processing[M]. New York:Academic Press, 2000
|
[2] |
Rosenfeld A, Woods R E. Digital Picture Processing[M]. New York:Academic Press, 1982
|
[3] |
Nodes T, Gallagher N C. The Output Distribution of Median Type Filters[J]. IEEE Transactions on Communications, 1984, 32(5):532-541 doi: 10.1109/TCOM.1984.1096099
|
[4] |
Brownrigg D. The Weighted Median Filter[J]. Communications of the ACM, 1984, 27(8):807-818 doi: 10.1145/358198.358222
|
[5] |
Ko S J, Lee Y H. Center Weighted Median Filters and Their Applications to Image Enhancement[J]. IEEE Transactions on Circuits & Systems, 1991, 38(9):984-993 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=83870&contentType=Journals+%26+Magazines&punumber%3D31
|
[6] |
Abreu E, Lightstone M, Mitra S K, et al. A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Image Processing, 1996, 5(6):1012-1025 doi: 10.1109/83.503916
|
[7] |
Sun T, Neuvo Y. Detail-Preserving Median Based Filters in Image Processing[J]. Pattern Recognition Letters, 1994, 15(4):341-347 doi: 10.1016/0167-8655(94)90082-5
|
[8] |
李树涛, 王耀南.图象椒盐噪声的非线性自适应滤除[J].中国图象图形学报, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004
Li Shutao, Wang Yaonan. Non-Linear Adaptive Removal of Salt and Pepper Noise from Images[J]. Journal of Image and Graphics, 2000, 5(12):999-1001 doi: 10.3969/j.issn.1006-8961.2000.12.004
|
[9] |
邢藏菊, 王守觉, 邓浩江, 等.一种基于极值中值的新型滤波算法[J].中国图象图形学报, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html
Xing Cangju, Wang Shoujue, Deng Haojiang, et al. A New Filtering Algorithm Based on Extremum and Median Value[J]. Journal of Image and Graphics, 2001, 6(6):533-536 http://www.cqvip.com/QK/90287X/2001006/5376853.html
|
[10] |
Zhang S, Karim M A. A New Impulse Noise Detector for Switching Median Filters[J]. IEEE Signal Processing Letters, 2002, 9(11):360-363 doi: 10.1109/LSP.2002.805310
|
[11] |
Chan R H, Ho C W, Nikolova M. Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail Preserving Regularization[J]. IEEE Transactions on Signal Processing, 2005, 14(10):1479-1485 http://ci.nii.ac.jp/naid/80017549968
|
[12] |
Srinivasan K S, Ebenezer D. A New Fast and Efficient Decision-Based on Algorithm for Removal of High-Density Impulse Noise[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192 doi: 10.1109/LSP.2006.884018
|
[13] |
Ibrahim H, Kong N S P, Ng T F. Simple Adaptive Median Filter for the Removal of Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4):1920-1927 doi: 10.1109/TCE.2008.4711254
|
[14] |
Wang Z, Zhang D. Progressive Switching Median Filter for the Removal Impulse Noise from Highly Corrupted Images[J]. IEEE Transactions on Circuits and Systems Ⅱ Analog & Digital Signal Processing, 1999, 46(1):78-80 http://citeseerx.ist.psu.edu/showciting?cid=260222
|
[15] |
Ahmed F, Das S. Removal of High-Density Salt-and-Pepper Noise in Images with an Iterative Adaptive Fuzzy Filter Using Alpha-Trimmed Mean[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5):1352-1358 doi: 10.1109/TFUZZ.2013.2286634
|
[16] |
Bhadouria V S, Ghoshal D, Siddiqi A H. A New Approach for High Density Saturated Impulse Noise Removal Using Decision-Based Coupled Window Median Filter[J]. Signal Image and Video Processing, 2014, 8(1):71-84 doi: 10.1007/s11760-013-0487-5
|
[1] | LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703 |
[2] | ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337 |
[3] | XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482 |
[4] | XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801. |
[5] | YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723. |
[6] | HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919. |
[7] | SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557. |
[8] | XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590. |
[9] | Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251. |
[10] | Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49. |
1. |
吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .
![]() |