AN Jiachun, DU Yujun, QU Xiaochuan, YANG Jian. Analysis of Second Order Ionospheric Effects on Atmospheric Parameters Estimation in Radio Occultation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1440-1445. DOI: 10.13203/j.whugis20150228
Citation: AN Jiachun, DU Yujun, QU Xiaochuan, YANG Jian. Analysis of Second Order Ionospheric Effects on Atmospheric Parameters Estimation in Radio Occultation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1440-1445. DOI: 10.13203/j.whugis20150228

Analysis of Second Order Ionospheric Effects on Atmospheric Parameters Estimation in Radio Occultation

Funds: The National Natural Science Foundation of China, Nos. 41204028, 41231064;the Fundamental Research Funds for the Central Universities, Nos. 2042014kf0266, JZ2014HGBZ0345.
More Information
  • Received Date: April 19, 2015
  • Published Date: November 04, 2015
  • In the study of atmospheric inversion based on radio occultation, the residual ionospheric errors have great influence on the accuracy and the second order errors are not ignorable. In this paper, MSIS90 atmospheric model, 3D NeUoG ionospheric model and IGRF11 geomagnetic model are all collected, and 3D ray tracing method was used to simulate the changes of the second order residual ionospheric errors in radio occultation. Under different solar activities, local time, azimuth, the second order errors were analyzed, especially for its global distribution. The results show that second order errors are usually in sub-centimeter level, but up to centimeter level under higher solar activity or in middle and low latitudes at 0° or 180° azimuth, and illustrate the structure of “three-peak” in globe. Therefore, in the occultation data process, the ionospheric monitoring must be strengthened and second order ionospheric errors must be eliminated effectively.
  • [1]
    Melbourne W G, Davis E S, Duncan C B, et al. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring [R]. Jet Propulsion Laboratory, California, 1994
    [2]
    Kursinski E R, Hajj G A, Schofield J T, et al. Observing Earth's Atmosphere with Radio Occultation Measurement Use Global Positioning System [J]. Journal of Geophysical Research, 1997, 120 (D19) :23 429-23 465
    [3]
    Hocke K. Inversion of GPS Meteorology Data [J]. Annales Geophysicae, 1997, 15 (4):443-450
    [4]
    Steiner A K, Kirchengast G, Foelsche U, et al. GNSS Occultation Sounding for Climate Monitoring [J]. Physics and Chemistry of the Earth (Parts A), 2001, 26 (3):113-124
    [5]
    Mannucci A J, Ao C O, Pi X, et al. The Impact of Large Scale Ionospheric Structure on Radio Occultation Retrievals [J]. Atmospheric Measurement Techniques, 2011, 4 (12):2 837-2 850
    [6]
    Vergados P, Pagiatakis S D. Latitudinal, Solar, and Vertical Variability of Higher-Order Ionospheric Effects on Atmospheric Parameter Retrievals from Radio Occultation Measurements [J]. Journal of Geophysical Research, 2011, 116(A9), doi: 10.1029/2011ja016573
    [7]
    Liu Congliang, Kirchengast G, Zhang Kefei, et al. The Effects of Residual Ionospheric Errors on GPS Radio Occultation Temperature [J]. Chinese J Geophysics, 2014, 57(8): 2 404-2 414 (柳聪亮, Kirchengast G, Zhang Kefei, 等. 电离层残差对掩星反演温度精度的影响[J]. 地球物理学报, 2014, 57(8): 2 404-2 414)
    [8]
    Liu Congliang, Zhang Kefei, Tan Zhixiang, et al. The Effects of Ionospheric Disturbances on the Accuracy of GPS Radio Occultation Bending Angle and Temperature [J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1 334-1 339(柳聪亮, Zhang Kefei, 谭志祥, 等. 电离层干扰对GPS掩星弯曲角和温度精度的影响[J]. 武汉大学学报·信息科学版, 2014, 39(11): 1 334-1 339)
    [9]
    Syndergaard S. On the Ionosphere Calibration in GPS Radio Occultation Measurements [J]. Radio Science, 2000, 35(3): 865-884
    [10]
    Qu Xiaochuan. Research on Characteristics and Correction Methods of Ionospheric Error in GNSS Radio Occultation [D]. Wuhan :Wuhan University, 2014(屈小川. GNSS无线电掩星的电离层误差特性及改正方法研究[D]. 武汉:武汉大学, 2014)
    [11]
    Hedin A E. Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere [J]. Journal of Geophysical Research, 1991, 96(A2): 1 159-1 172
    [12]
    Leitinger R, Titheridge J E, Kirchengast G, et al. A “Simple” Global Empirical Model for the F Layer of the Ionosphere [J]. Kleinheubacher Berichte, 1996, 39: 697-704
    [13]
    Finlay C C, Maus S, Beggan C D. International Geomagnetic Reference Field: The Eleventh Generation [J]. Geophysical Journal International, 2010, 183(3): 1 216-1 230
  • Related Articles

    [1]XIAO Tianyuan, LIU Pengcheng, AI Tinghua, LI Jingzhong. A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 119-125. DOI: 10.13203/j.whugis20180336
    [2]DIAN Yuanyong, YANG Guang, FANG Shenghui. Combining Fourier Spectrum Texture and Spectral Information for Land Cover Classification with High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 362-368. DOI: 10.13203/j.whugis20140952
    [3]LIU Li, LI Jinling. Determination and Analysis of Station Parameters ofthe Chinese VLBI Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 262-266. DOI: 10.13203/j.whugis20120005
    [4]ZHANG Zhibin, WANG Guangli, LIU Xiang, TANG Zhenghong. Analysis of EOP Determination via Chinese VLBI Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 911-915.
    [5]WEI Erhu, ZHANG Qi. On Length of Day with 1985-2010 VLBI Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1020-1023.
    [6]LIN Hui, LIANG Liang, DU Peijun, SUN Huasheng. Image Registration Based on Fourier-Mellin Transform[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 649-652.
    [7]WEI Erhu, LI Xuechuan, YI Hui, LIU Jingnan. On EOP Parameters Based on 2008 VLBI Observation Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 988-990.
    [8]WEI Erhu, LIU Jingnan, PAN Peijing. On Data Processing with Last Three Years of VLBI Observation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1275-1278.
    [9]LI Yingbing, XU Shaoquan, ZHANG Yongjun, ZHANG Xiaohong. The Application of Spectrum Analysis in GPS Auto-monitoring System[J]. Geomatics and Information Science of Wuhan University, 2001, 26(4): 343-348.
    [10]Zhang Genshou, Zhu Guorui. Analysis and Study of the Areal Shape on Map[J]. Geomatics and Information Science of Wuhan University, 1994, 19(1): 29-36.
  • Cited by

    Periodical cited type(7)

    1. 牟希农. 基于小波域马尔可夫随机场的医学影像图像提取实现研究. 贵州大学学报(自然科学版). 2020(01): 74-77 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 郭利强,孟庆超. 基于多标签共享子空间学习和内核脊回归的空谱分类算法. 光子学报. 2020(05): 121-133 .
    4. 李玉,甄畅,石雪,赵泉华. 基于熵加权K-means全局信息聚类的高光谱图像分类. 中国图象图形学报. 2019(04): 630-638 .
    5. 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法. 国土资源遥感. 2019(02): 24-31 .
    6. 职露,余旭初,邹滨,刘冰. 多层级二值模式的高光谱影像空-谱分类. 武汉大学学报(信息科学版). 2019(11): 1659-1666 .
    7. 韦春桃,赵平,肖博林,白风,李小勇,杨晚芸. 结合双树复小波纹理特征和MRF模型的遥感图像分割. 测绘通报. 2019(10): 40-45 .

    Other cited types(8)

Catalog

    Article views (1178) PDF downloads (1196) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return