LI Yongchang, JIN Longxu, LI Guoning, WU Yinan, WANG Wenhua. Image Motion Velocity Model and Compensation Strategy of Wide-Field Remote Sensing Camera[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1278-1286. DOI: 10.13203/j.whugis20150206
Citation: LI Yongchang, JIN Longxu, LI Guoning, WU Yinan, WANG Wenhua. Image Motion Velocity Model and Compensation Strategy of Wide-Field Remote Sensing Camera[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1278-1286. DOI: 10.13203/j.whugis20150206

Image Motion Velocity Model and Compensation Strategy of Wide-Field Remote Sensing Camera

Funds: 

The National High Technology Research and Development Program 863-2-5-1-13B

Sci-tech Development Program of Jilin Province 20130522107JH

the Youth Fund of GF GFZX04061502

More Information
  • Author Bio:

    LI Yongchang, PhD, mainly engaged in photoelectric imaging technology and image motion compensation technology of space camera. E-mail:Liyongchang1231@163.com

  • Received Date: February 22, 2016
  • Published Date: August 04, 2018
  • During the orbit imaging of the wide-field remote sensing camera, it is affected by the earth's rotation, satellite jittering, attitude maneuverings and other factors, resulting in a decrease in image quality. Therefore a image motion velocity modeling is put forword, which is suitable for the wide-field of the remote sensing camera and considers the effect of off-axis angle on the calculation accuracy, to deduce the off-axis three-mirror camera image motion velocity and drift angle. Taking a satellite as an example, the distribution of the image motion velocity and the drift angle in the focal plane of the three typical imaging modes is simulated. The simulation results, which are consistent with the qualitative analysis results, verify the validity of the image motion velocity model. On this basis, a corresponding image motion compensation strategy is proposed against the scroll and pitch imaging mode. The compensation effect shows that, when the satellite is imaging as scrolling and pitching angles are both 35°, the global optimization drift angle matching strategy can guarantee that the MTF of the whole focal area is greater than 0.95 (16 integration stages). The MTF of the focus observation target is greater than 0.95 (96 integration stages) with the local optimization drift angle matching strategy. Using the proposed method of image motion velocity matching strategy, the MTF of the whole focal area is greater than 0.95 (16 integration stages) when dividing the row cycles into 11 groups. The simulation results show that the proposed strategy can effectively solve the image quality degradation problem when scroll and pitch imaging and can provide a reliable basis for the image motion compensation of the wide-field remote sensing camera.
  • [1]
    岳庆兴, 唐新明, 高小明.亚m级卫星TDI CCD立体测绘相机成像仿真[J].武汉大学学报·信息科学版, 2015, 40(3):327-332 http://ch.whu.edu.cn/CN/abstract/abstract3205.shtml

    Yue Qingxing, Tang Xinming, Gao Xiaoming. Imaging Simulation of Sub-meter Satellite TDI CCD Camera for Surveying and Mapping[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):327-332 http://ch.whu.edu.cn/CN/abstract/abstract3205.shtml
    [2]
    宁永慧, 郭永飞.星上时间延迟积分CCD拼接相机图像的实时处理[J].光学精密工程, 2014, 22(2):508-516 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxjmgc201402036

    Ning Yonghui, Guo Yongfei. Real-Time Image Processing in TDI CCD Space Mosaic Camera[J]. Opt Precision Eng, 2014, 22(2):508-516 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxjmgc201402036
    [3]
    张健, 张玲花, 刘立国, 等.全景式航空遥感器TDI CCD精密装调必要性分析及实现方法[J].中国光学, 2014, 7(6):996-1001 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zggxyyygxwz201406017

    Zhang Jian, Zhang Linghua, Liu Liguo, et al. Necessity and Implement Method of Precise Assembling of TDI CCD in Sweep Aerial Remote Sensor[J]. Chinese Optics, 2014, 7(6):996-1001 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zggxyyygxwz201406017
    [4]
    闫利, 姜芸, 王军.利用视线向量的资源三号卫星影像严格几何处理模型[J].武汉大学学报·信息科学版, 2013, 38(12):1451-1455 http://ch.whu.edu.cn/CN/abstract/abstract2828.shtml

    Yan Li, Jiang Yun, Wang Jun. Building of Rigorous Geometric Processing Model Based on Line-of-sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1451-1455 http://ch.whu.edu.cn/CN/abstract/abstract2828.shtml
    [5]
    贺小军, 曲宏松, 张贵祥, 等.扫描镜稳定度对TDI CCD测量精度的影响[J].中国光学, 2014, 7(4):665-671 https://www.wenkuxiazai.com/doc/c4d6bf1f27d3240c8547ef1b-2.html

    He Xiaojun, Qu Hongsong, Zhang Guixiang, et al. Impact of Scan Mirror Stability on TDI CCD System Measure Accuracy[J]. Chinese Optics, 2014, 7(4):665-671 https://www.wenkuxiazai.com/doc/c4d6bf1f27d3240c8547ef1b-2.html
    [6]
    乐国庆, 郭永飞, 刘春香, 等.低曝光条件下遥感相机微振动量检测[J].中国光学, 2014, 7(6):917-924 http://www.cnki.com.cn/Article/CJFDTotal-ZGGA201406005.htm

    Le Guoqing, Guo Yongfei, Liu Chunxiang, et al. Micro-vibration Detection of Remote Sensing Ca-mera Under Low Exposure Condition[J]. Chinese Optics, 2014, 7(6):917-924 http://www.cnki.com.cn/Article/CJFDTotal-ZGGA201406005.htm
    [7]
    唐新明, 周平, 张过, 等.资源三号测绘卫星传感器校正产品生产方法研究[J].武汉大学学报·信息科学版, 2014, 39(3):287-299 http://ch.whu.edu.cn/CN/Y2014/V39/I3/287

    Tang Xinming, Zhou Ping, Zhang Guo, et al. Research on a Production Method of Sensor Corrected Products for ZY-3 Satellite[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3):287-299 http://ch.whu.edu.cn/CN/Y2014/V39/I3/287
    [8]
    刘磊, 马军, 郑玉权.空间微重力下离轴三反相机离焦范围[J].中国光学, 2014, 7(2):320-325 https://www.wenkuxiazai.com/doc/5fc32b832f60ddccdb38a036.html

    Liu Lei, Ma Jun, Zheng Yuquan. Defocus Range of Off-Axis Three-Mirror Anastigmat (TMA) Camera Under Space Microgravity[J]. Chinese Optics, 2014, 7(2):320-325 https://www.wenkuxiazai.com/doc/5fc32b832f60ddccdb38a036.html
    [9]
    Le V N, Chen S, Fan Z. Optimized Asymmetrical Tangent Phase Mask to Obtain Defocus Invariant Modulation Transferfunction in Incoherent Imaging Systems[J]. Opt Lett, 2014, 39(7):271-274
    [10]
    李进, 邢飞, 王翀.空间CCD相机高精度在轨调制传递函数估算[J].光学学报, 2015, 35(2):0211003 http://www.opticsjournal.net/abstract.htm?id=OJ150120000066GdJfMi

    Li Jin, Xing Fei, Wang Chong. High-Precision On-Orbit Assessment of MTF for Space CCD Camera[J]. Acta Optica Sinica, 2015, 35(2):0211003 http://www.opticsjournal.net/abstract.htm?id=OJ150120000066GdJfMi
    [11]
    Hao C L, Chen S Q, Zhang W. Comprehensive Analysis of Imaging Quality Degradation of an Airborne Optical System for Aerodynamic Flow Field Around the Optical Window[J]. Appl Opt, 2013, 52(33):7889-7898 doi: 10.1364/AO.52.007889
    [12]
    吕恒毅, 薛旭成, 赵运龙, 等.空间光学相机在乃奎斯特频率处的调制传递函数测试与实验[J].光学精密工程, 2015, 23(5):1484-1489 http://www.eope.net/gxjmgc/article/2015/2015-5-1484.htm

    Lv Hengyi, Xue Xucheng, Zhao Yunlong, et al. Measurement and Experiment of Modulation Transfer Function at Nyquist Frequency for Space Optical Cameras[J]. Opt Precision Eng, 2015, 23(5):1484-1489 http://www.eope.net/gxjmgc/article/2015/2015-5-1484.htm
    [13]
    Ghosh S K. Image Motion Compensation Through Augmented Collinearity Equations[J]. Optical Engineering, 1985, 24(6):241014
    [14]
    李刚, 杨名宇.基于联合变换相关的机载航空相机像移测量[J].中国光学, 2015, 8(3):401-406 http://www.cqvip.com/QK/60129X/201503/665240720.html

    Li Gang, Yang Mingyu. Image Motion Measurement for Airborne Camera Based on Joint Transform Correlation[J]. Chinese Optics, 2015, 8(3):401-406 http://www.cqvip.com/QK/60129X/201503/665240720.html
    [15]
    王国良, 刘金国, 龙科慧, 等.离轴三反航天测绘相机像移对成像质量的影响[J].光学精密工程, 2014, 22(3):806-813 http://www.opticsjournal.net/Abstract.htm?aid=OJ140414000059Zw3z6B

    Wang Guoliang, Liu Jinguo, Long Kehui, et al. Influence of Image Motion on Image Quality of Off-Axis TMA Aerospace Mapping Camera[J]. Opt Precision Eng, 2014, 22(3):806-813 http://www.opticsjournal.net/Abstract.htm?aid=OJ140414000059Zw3z6B
    [16]
    赵嘉鑫, 张涛, 杨永明, 等. TDI-CCD全景航空相机的像移速度场计算模型研究[J].光学学报, 2014, 34(7):0728003 http://www.irgrid.ac.cn/handle/1471x/941925?mode=full&submit_simple=Show+full+item+record

    Zhao Jiaxin, Zhang Tao, Yang Yongming, et al. Image Motion Velocity Field of TDI-CCD Aerial Panoramic Camera[J]. Acta Optica Sinica, 2014, 34(7):0728003 http://www.irgrid.ac.cn/handle/1471x/941925?mode=full&submit_simple=Show+full+item+record
    [17]
    胡燕, 金光, 常琳, 等.椭圆轨道TDI CCD相机像移匹配计算与成像验证[J].光学精密工程, 2014, 22(8):2274-2284 http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=yhxb&yearIssue=2008_2

    Hu Yan, Jin Guang, Chang Lin, et al. Image Motion Matching Calculation and Imaging Validation of TDI CCD Camera on Elliptical Orbit[J]. Opt Precision Eng, 2014, 22(8):2274-2284 http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=yhxb&yearIssue=2008_2
    [18]
    刘海秋, 闫得杰, 王栋, 等.飞船振动引起的空间相机像移模型分析[J].光学学报, 2014, 34(6):0612001 http://www.opticsjournal.net/abstract.htm?id=OJ140116000224A7D0Gc

    Liu Haiqiu, Yan Dejie, Wang Dong, et al. Space Camera Image Motion Model Analysis Caused by Spacecraft Vibration[J]. Acta Optica Sinica, 2014, 34(6):0612001 http://www.opticsjournal.net/abstract.htm?id=OJ140116000224A7D0Gc
    [19]
    王家骐, 于平, 颜昌翔, 等.航天光学遥感器像移速度矢计算数学模型[J].光学学报, 2004, 24(12):1585-1589 doi: 10.3321/j.issn:0253-2239.2004.12.001

    Wang Jiaqi, Yu Ping, Yan Changxiang, et al. Space Optical Remote Sensor Image Motion Velocity Vector Computational Modeling[J]. Acta Optica Sinica, 2004, 24(12):1585-1589 doi: 10.3321/j.issn:0253-2239.2004.12.001
    [20]
    武星星, 刘金国.基于地球椭球的空间相机侧摆摄影像移补偿[J].光学精密工程, 2014, 22(2):351-359 http://www.opticsjournal.net/abstract.htm?id=OJ130416000191v2y5A8

    Wu Xingxing, Liu Jinguo. Image Motion Compensation of Scroll Imaging for Space Camera Based on Earth Ellipsoid[J]. Opt Precision Eng, 2014, 22(2):351-359 http://www.opticsjournal.net/abstract.htm?id=OJ130416000191v2y5A8
    [21]
    王翀, 尤政, 邢飞, 等.大视场空间遥感相机的像速场及图像传感器曝光积分控制[J].光学学报, 2013, 33(5):0511002 http://www.opticsjournal.net/abstract.htm?id=OJ130409000026oUrXt1

    Wang Chong, You Zheng, Xing Fei, et al. Image Motion Velocity for Wide View Remote Sensing Camera and Detectors Exposure Integration Control[J]. Acta Optic Sinica, 2013, 33(5):0511002 http://www.opticsjournal.net/abstract.htm?id=OJ130409000026oUrXt1
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (1748) PDF downloads (332) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return