LI Deren, SHEN Xin, GONG Jianya, ZHANG Jun, LU Jianhua. On Construction of China’s Space Information Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 711-715. DOI: 10.13203/j.whugis20150021
Citation: LI Deren, SHEN Xin, GONG Jianya, ZHANG Jun, LU Jianhua. On Construction of China’s Space Information Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 711-715. DOI: 10.13203/j.whugis20150021

On Construction of China’s Space Information Network

Funds: The National Natural Science Foundation of China,No.91438203;China Postdoctoral Science Foundation Funded
More Information
  • Corresponding author:

    SHEN Xin,PhD.

  • Received Date: January 19, 2015
  • Revised Date: June 04, 2015
  • Published Date: June 04, 2015
  • Using space platforms as carriers,spatial information network(SIN)is a new kind of net-work system that implements real-time data acquisition,fast network transmission and informationprocessing.Through real-time data access/transmission,networks interconnection and cooperativedata processing,SIN could realize the integrated application and collaborative service of satellite re-mote sensing,satellite navigation and satellite communication.Firstly,the concept,function andcharacteristic of space information network are introduced.Then the significance and necessity of con-struction of China’s SIN are represented after an analysis of development of SIN at home and abroad.Finally,the research objectives and scientific issues for China’s SIN construction are discussed.
  • Related Articles

    [1]WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159
    [2]TANG Xiaochuan, TU Zihan, REN Xuqing, FANG Chengyong, WANG Yu, LIU Xin, FAN Xuanmei. A Multi-modal Deep Neural Network Model for Forested Landslide Detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1566-1573. DOI: 10.13203/j.whugis20230099
    [3]ZHANG Li, DONG Youfu, LI Ming. ASTER GDEM and SRTM1 Elevation Data Integration with RProp Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 777-783. DOI: 10.13203/j.whugis20200679
    [4]TAO Liqing, HUANG Guoman, YANG Shucheng, WANG Tongtong, SHENG Huijun, FAN Haitao. A Interferogram Denoising Method Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 559-567. DOI: 10.13203/j.whugis20200589
    [5]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [6]REN Jiaxin, LIU Wanzeng, LI Zhilin, LI Ran, ZHAI Xi. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. DOI: 10.13203/j.whugis20190259
    [7]ZHAO Xianghong, BAO Jingyang, OUYANG Yongzhong, HUANG Xianyuan, HUANG Chenhu, LU Xiuping. Detecting Outlier of Multibeam Sounding with BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 518-524. DOI: 10.13203/j.whugis20160336
    [8]SUN Deyong, LI Yunmei, WANG Qiao, LE Chengfeng. Remote Sensing Retrieval of CDOM Concentration in Lake Taihu with Hyper-spectral Data and Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 851-855.
    [9]WANG Jianmei, QIN Wenzhong. BP Neural Network Classifier Based on Levenberg-Marquardt Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 928-931.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.

Catalog

    Article views (4757) PDF downloads (2859) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return