WANG Jiao, ZHOU Chenghu, CHENG Weiming. The Spatial Pattern of Lunar Craters on a Global Scale[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 512-519. DOI: 10.13203/j.whugis20140893
Citation: WANG Jiao, ZHOU Chenghu, CHENG Weiming. The Spatial Pattern of Lunar Craters on a Global Scale[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 512-519. DOI: 10.13203/j.whugis20140893

The Spatial Pattern of Lunar Craters on a Global Scale

Funds: 

The National Natural Science Foundation of China 41571388, 41171332

More Information
  • Author Bio:

    WANG Jiao, PhD candidate, specializes in digital planetary geomorphology. E-mail: wjiao@lreis.ac.cn

  • Corresponding author:

    CHENG Weiming, PhD, professor. E-mail: chengwm@lreis.ac.cn

  • Received Date: July 28, 2015
  • Published Date: April 04, 2017
  • Impact craters over the lunar surface are often arranged in alignments and clusters, which are related to the results of mass wasting, mantling, and structural modifications effected by micrometerorite and meteorite bombardment, volcanic processes and crustal vibrations. High-resolution optical images and DEM returned from Chang'E mission provide a new chance for estimation of spatial variation in the crater density. We used Kernel density and L(d) function coming from Ripley's K to explore the spatial pattern of lunar craters in the mare, highland, latitudinal zones from 28°N to 42°N and longitudinal zones from 40°W to 60°W on the Moon, which included 106 016 impact craters with diameters bigger than 500 m. Spatial distribution pattern analysis suggests a clustered distribution of craters on the Moon, and GIS-based spatial Kernel density identified three main clusters of craters within highlands (the biggest one located in the northeastern high latitude). The observed ratio of the crater density in highland to that in mare region is about 5 within the diameter ranged from 1km to 500 km. It also showed that the average density of craters on the eastern hemisphere was substantially higher than that on the western hemisphere, which was consistent with the proposal that western mare units are generally younger than eastern mare units. L(d) function value of the craters, which provided information on the degree of clustering, suggested the craters generally gathered together first then separated with the distance increasing. An amount of 31 study areas brought out the symmetric variations existed in latitudinal and longitudinal study areas on the local scale, which pointed to the craters density are in fluctuated decline from the equator to two poles and so are they from longitude of central meridian to eastern or western side of the Moon with the distance rising.
  • [1]
    欧阳自远. 月球科学概论[M]. 北京:宇航出版社, 2005:58-59

    Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing:China Astronautic Publishing House, 2005:58-59
    [2]
    黄倩, 平劲松, 苏晓莉, 等. 嫦娥一号CLTM-s01模型揭示和证认的月球地形新特征[J]. 中国科学:物理学, 力学, 天文学, 2009, 52(12):1815-1823 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200910002.htm

    Huang Qian, Ping Jingsong, Su Xiaoli, et al. New Features of the Moon Revealed and Identified by CLTM-s01[J]. Science in China:Physics, Mechanics and Astronomy, 2009, 52(12):1815-1823 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200910002.htm
    [3]
    中国科学院地球化学研究所. 月质学研究进展[M]. 北京:科学出版社, 1977:7-8

    Institute of Geochemistry, Chinese Academy of Sciences. Research Progress on Lunar Geology[M]. Beijing:Science Press, 1977:7-8
    [4]
    Head J W, Fassett C I, Kadish S J, et al. Global Distribution of Large Lunar Craters:Implications for Resurfacing and Impactor Populations[J]. Science, 2010, 329 (5998):1504-1507 doi: 10.1126/science.1195050
    [5]
    Kadish S J, Fassett C I, Head J W, et al. A Global Catalog of Large Lunar Craters (>=20 km) from the Lunar Orbiter Laser Altimeter[C]. The 42nd Lunar and Planetary Science Conference, Woodlands, Texas, 2011
    [6]
    McDowell J. A Merge of a Digital Version of the List of Lunar Craters from Andersson and Whitaker with the List from the USGS Site[OL]. http://www.planet4589.org/astro/lunar/CratersS,2010
    [7]
    International Astronomical Union. Gazetteer of Planetary Nomenclature:Planetary Names Moon[OL]. http://planetarynames.wr.usgs.gov/SearchResults?target=MOON&featureType=Crater,%20craters,2005
    [8]
    Rodionova J F, Karlov A A, Skobeleva T P, et al. Morphological Catalogue of the Craters of the Moon[OL]. http://selena.sai.msu.ru/Home/Moon_Cat/Mooncate.htmS,2005
    [9]
    Salamuniccar G, Loncaric S, Mazarico E. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data[J]. Planetary and Space Science, 2012, 60 (1):236-247 doi: 10.1016/j.pss.2011.09.003
    [10]
    Robbins S J, Antonenko I, Kirchoff M R, et al. The Variability of Crater Identification Among Expert and Community Crater Analysts[J]. Icarus, 2014, 234:109-131 https://www.researchgate.net/profile/Irene_Antonenko/publication/260557068_The_variability_of_crater_identification_among_expert_and_community_crater_analysts/links/554e1f3208ae739bdb8f21d0.pdf?disableCoverPage=true
    [11]
    Sawabe Y, Matsunaga T, Rokugawa S. Automatic Crater Detection Algorithm for the lunar Surface Using Multiple Approaches[J]. Journal of Remote Sensing Society of Japan, 2005, 25(2):157-168 https://www.jstage.jst.go.jp/article/rssj1981/25/2/25_2_157/_article/-char/ja/
    [12]
    Bandeira L, Ding W, Stepinski T F. Detection of Sub-kilometer Craters in High Resolution Planetary Images Using Shape and Texture Features[J]. Advances in Space Research, 2012, 49(1):64-74 doi: 10.1016/j.asr.2011.08.021
    [13]
    岳宗玉, 邸凯昌, 张平. 月表撞击坑形成过程数值模拟理论与方法[J]. 地学前缘, 2012, 19(6):110-117 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206015.htm

    Yue Zongyu, Di Kaichang, Zhang Ping. Theories and Methods for Numerical Simulation of Impact Crater Formation[J]. Earth Science Frontiers, 2012, 19(6):110-117 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206015.htm
    [14]
    Neukum G, König B, Arkani-Hamed J. A Study of Lunar Impact Crater Size-distributions[J]. The Moon, 1975, 12(2):201-229 doi: 10.1007/BF00577878.pdf
    [15]
    Kneissl T, Van Gasselt S, Neukum G. Map-projection-independent Crater Size-frequency Determination in GIS Environments-New Software Tool for ArcGIS[J]. Planetary and Space Science, 2011, 59(11):1243-1254 https://www.researchgate.net/publication/232374031_Map-projection-independent_crater_size-frequency_determination_in_GIS_environments-New_software_tool_for_ArcGIS
    [16]
    Gallant J, Gladman B, Cuk M. Current Bombardment of the Earth-Moon System:Emphasis on Cratering Asymmetries[J]. Icarus, 2009, 202(2):371-382 doi: 10.1016/j.icarus.2009.03.025
    [17]
    周增坡, 程维明, 万丛, 等. 月球正面撞击坑的空间分布特征分析[J]. 地球信息科学学报, 2012, 14(5):618-626 doi: 10.3724/SP.J.1047.2012.00618

    Zhou Zengpo, Cheng Weiming, Wan Cong, et al. Analysis on the Spatial Distribution Characteristics of Lunar Neat Side Impact Craters[J]. Journal of Geo-information Science, 2012, 14(5):618-626 doi: 10.3724/SP.J.1047.2012.00618
    [18]
    Le Gallo J, Ertur C. Exploratory Spatial Data Analysis of the Distribution of Regional Per Capita GDP in Europe, 1980-1995[J]. Papers in Regional Science, 2003, 82(2):175-201 doi: 10.1007/s101100300145
    [19]
    仇方道, 朱传耿, 佟连军, 等. 淮海经济区县域经济差异变动的空间分析[J]. 地理科学, 2009, 29(1):56-63 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200901008.htm

    Qiu Fangdao, Zhu Chuangeng, Tong Lianjun, et al. Spatial Analysis of Economic Dipparities of County Level in Huaihai Economic Zone[J]. Scientia Geographica Sinica, 2009, 29(1):56-63 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200901008.htm
    [20]
    张金屯, 孟东平. 芦芽山华北落叶松林不同龄级立木的点格局分析[J]. 生态学报, 2004, 24(1):35-40 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200401005.htm

    Zhang Jintun, Meng Dongping. Spatial Pattern Analysis of Individuals in Different Age-classes of Larix Principis-rupprechtii in Luya Mountain Reserve, Shanxi, China[J]. Acata Ecologica Sinica, 2004, 24 (1):35-40 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200401005.htm
    [21]
    Rosenberg M S. Wavelet Analysis for Detecting an Isotropy in Point Patterns[J]. Journal of Vegetation Science, 2004, 15:277-284 doi: 10.1111/j.1654-1103.2004.tb02262.x
    [22]
    Rosenblatt M. Remarks on Some Non-parametric Estimates of a Density Function[J]. Annals of Mathematical Statistics, 1956, 27(6):832-837 http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177728190
    [23]
    Parzen E. On Estimation of a Probability Density Function and Mode[J]. Annals of Mathematical Statistics, 1962, 33(8):1065-1076 http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177704472
    [24]
    Silverman B W. Density Estimation for Statistics and Data Analysis[M]. New York:Chapman and Hall, 1986
    [25]
    王远飞, 何洪林. 空间数据分析方法[M]. 北京:科学出版社, 2007:66-71

    Wang Yuanfei, He Honglin. Spatial Data Analysis[M]. Beijing:Science Press, 2007:66-71
    [26]
    Ripley B D. The Second-order Analysis of Stationary Point Processes[J]. Journal of Applied Probability, 1976, 13:255-266 doi: 10.1017/S0021900200094328
    [27]
    Besag J L, Milne R, Zachary S. Point Process Limits of Lattice Processes[J]. Journal of Applied Probability, 1982, 19(1):210-216 http://www.jstor.org/stable/3213930?origin=crossref
    [28]
    王娇, 程维明, 周成虎, 等. 全月球撞击坑形貌特征的识别与多指标表达[J]. 地理研究, 2014, 33(7):1251-1263 http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201407007.htm

    Wang Jiao, Cheng Weiming, Zhou Chenghu, et al. Identification and Morphologic Expression of Lunar Impact Craters[J]. Geographical Research, 2014, 33(7):1251-1263 http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201407007.htm
    [29]
    王娇, 程维明, 周成虎. 全月球撞击坑识别、分类及空间分布分析[J]. 地理科学进展, 2015, 34(3):1-10 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201503008.htm

    Wang Jiao, Cheng Weiming, Zhou Chenghu. A Global Inventory of Lunar Craters:Identification, Classification, and Distribution[J]. Progress in Geography, 2015, 34(3):1-10 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201503008.htm
    [30]
    Cheng W M, Wang J, Wan C. Morphometric Characterization and Reconstruction Effect Among Lunar Impact Craters[J]. Earth, Moon, and Planets, 2014, 111(3-4):139-155 doi: 10.1007/s11038-014-9431-0
    [31]
    刘锐, 胡伟平, 王红亮, 等. 基于核密度估计的广佛都市区路网演变分析[J]. 地理科学, 2011, 31(1):81-86 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201101013.htm

    Liu Rui, Hu Weiping, Wang Hongliang, et al. The Road Network Evolution of Guangzhou-Foshan Metropolitan Area Based on Kernel Density Estimation[J]. Scientia Geographic Sinica, 2011, 31(1):81-86 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201101013.htm
    [32]
    Halliday I. The Variation in the Frequency of Meteorite Impact with Geographical Latitude[J]. Meteoritics, 1966, 2(3):271-278
    [33]
    Stöffler D, Ryder G. Stratigraphy and Isotope Ages of Lunar Geologic Units:Chronological Standard for the Inner Solar System[J]. Space Science Reviews, 2001, 96(1):9-54
    [34]
    Hiesinger H, Jaumann R, Neukum G, et al. Ages of Mare Basalts on the Lunar Nearside[J]. Journal of Geophysical Research:Planets, 2000, 105(E12):29239-29275 doi: 10.1029/2000JE001244
    [35]
    高凯, 周志翔, 杨玉萍, 等. 基于Ripley's K函数的武汉市景观格局特征及其变化[J]. 应用生态学报, 2010, 21(10):2621-2626

    Gao Kai, Zhou Zhixiang, Yang Yuping, et al. Characteristics and Changes of Landscape Pattern in Wuhan City Based on Ripley's K function[J]. Journal of Applied Ecology, 2010, 21(10):2621-2626
  • Related Articles

    [1]LI Pangyin, MI Xiaoxin, DING Penghui, SUN Weichen, ZHANG Huazu, LIU Chong, DONG Zhen, YANG Bisheng. Fusion of Vehicle-Mounted Imagery and Point Cloud for Road Boundary Extraction and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 631-639. DOI: 10.13203/j.whugis20230284
    [2]XING Ruixing, WU Fang, ZHANG Hao, GONG Xianyong. Dual-carriageway Road Extraction Based on Facing Project Distance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 152-158. DOI: 10.13203/j.whugis20150783
    [3]Liu Yuangang, Guo Qingsheng, Sun Yageng, Lin Qing, Zheng Chunyan. An Algorithm for Skeleton Extraction Between Map Objects[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 264-268.
    [4]LUAN Xuechen, FAN Hongchao, YANG Bisheng, LI Qiuping. Arterial Roads Extraction in Urban Road NetworksBased on Shape Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 327-331. DOI: 10.13203/j.whugis20120078
    [5]YU Jie, YU Feng, ZHANG Jing, LIU Zhenyu. High Resolution Remote Sensing Image Road Extraction Combining Region Growing and Road-unit[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 761-764.
    [6]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [7]WU Xiaobo, YANG Liao, SHEN Jinxiang, WANG Jie. Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1298-1301.
    [8]LI Jiatian, LI Jia, DUAN Ping, YU Li. Perspective Projection Algorithm for Sphere Delaunay Triangulated Irregular Network[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1116-1119.
    [9]CHEN Tao, AI Tinghua. Automatic Extraction of Skeleton and Center of Area Feature[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 443-446,455. DOI: 10.13203/j.whugis2004.05.015
    [10]Liu Shaochuang, Lin Zongjian. Semi automatic Road Extraction from Aerial Images[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 258-264.
  • Cited by

    Periodical cited type(1)

    1. 陈星铨,朱俊江,朱庆龙,焦钰涵,丁小笑,刘政渊,丁咚,贾永刚,李三忠,刘永江. 南海多波束测量中水深数据异常的精细处理与成因分析. 地球科学. 2025(02): 535-550 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return