CHEN Chuanfa, LIU Fengying, YAN Changqing, DAI Honglei, GUO Jinyun, LIU Guolin. A Huber-derived Robust Multi-quadric Interpolation Method for DEM Construction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 803-809. DOI: 10.13203/j.whugis20140456
Citation: CHEN Chuanfa, LIU Fengying, YAN Changqing, DAI Honglei, GUO Jinyun, LIU Guolin. A Huber-derived Robust Multi-quadric Interpolation Method for DEM Construction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 803-809. DOI: 10.13203/j.whugis20140456

A Huber-derived Robust Multi-quadric Interpolation Method for DEM Construction

Funds: 

National Natural Science Foundation of China Nos. 41101433, 41371367

Distinguished Young Scholar Program of Shandong University of Science and Technology 

Research Program of Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources 

Taishan Scholar Program (Special Fund for Construction Engineering) of Shandong Province 

More Information
  • Author Bio:

    CHEN Chuanfa, PhD, associate professor. E-mail:chencf@lreis.ac.cn

  • Received Date: September 06, 2015
  • Published Date: June 04, 2016
  • In this paper, we propose a robust multi-quadric method (MQ-H) based on Huber loss function to conduct interpolations of contaminated spatial points, especially those derived from remote-sensing techniques. The objective function of the MQ-H has two main parts ; an improved Huber loss function and a regularized penalty term used to improve robustness and avoid overfitting, respectively. A mathematical surface, subject to model error with different distributions, was employed to comparatively analyze the robustness of the MQ-H, the classical MQ, and a least absolute deviation based MQ (MQ-L). The results indicated that when sample errors follow a normal distribution or a Laplacian distribution, the performance of MQ-H is comparatively better than those of MQ, and more accurate than MQ-L. For sample errors with a contaminated normal distribution and Cauchy distribution, MQ-H is more robust than MQ-L and MQ. Moreover, MQ with the improved Huber loss function is superior to MQ with the classical Huber loss function. A real-world example of DEM construction with stereo-image-derived elevation points indicates that compared to the classical interpolation methods including IDW (inverse distance weighting), OK (ordinary Kriging) and ANUDEM (Australian National University DEM), MQ-H has a better ability to reduce the impact of outliers while maintaining subtle terrain features suitable for qualitative analysis.
  • [1]
    Robinson N, Regetz J, Guralnick R P. Earth Env-DEM90:A Nearly-Global, Void-Free, Multi-scale Smoothed, 90 m Digital Elevation Model from Fused ASTER and SRTM Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):57-67
    [2]
    Gonga-Saholiariliva N, Gunnell Y, Petit C, et al. Techniques for Quantifying the Accuracy of Gridded Elevation Models and for Mapping Uncertainty in Digital Terrain Analysis[J]. Progress in Physical Geography, 2011, 35(6):739-764
    [3]
    Liu H, Jezek K C, O'Kelly M E. Detecting Outliers in Irregularly Distributed Spatial Data Sets by Locally Adaptive and Robust Statistical Analysis and GIS[J]. International Journal of Geographical Information Science, 2001, 15(8):721-741
    [4]
    陈传法,岳天祥.基于条件模拟的DEM误差曲面实现研究[J].武汉大学学报·信息科学版,2010,35(2):197-200

    Chen Chuanfa, Yue Tianxiang. DEM Error Surface Relization Based on Conditional Simulation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):197-200
    [5]
    Billings S D, Beatson R K, Newsam G N. Interpolation of Geophysical Data Using Continuous Global Surfaces[J]. Geophysics, 2002, 67(6):1810-1822
    [6]
    张锦明,游雄,万刚.径向基函数算法中插值参数对DEM精度的影响[J].武汉大学学报·信息科学版,2013,38(5):608-611

    Zhang Jinming, You Xiong, Wan Gang. Effects of Interpolation Parameters in Multi-log Radial Basis Function on DEM Accuracy[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):608-611
    [7]
    Grohmann C H, Steiner S S. SRTM Resample with Short Distance-Low Nugget Kriging[J]. International Journal of Geographical Information Science, 2008, 22(8):895-906
    [8]
    Hutchinson M F, Gessler P E. Splines-More than Just a Smooth Interpolator[J]. Geoderma, 1994, 62(1-3):45-67
    [9]
    张菊清,陈再辉,魏建忠.DEM空间数据抗差内插模型及其分析[J].测绘科学,2007,32(6):33-34+204

    Zhang Juqing, Chen Zaihui, Wei Jianzhong. Robust Interpolation and Analyses for DEM[J]. Science of Surveying and Mapping, 2007, 32(6):33-34+204
    [10]
    Debese N, Moitié R, Seube N. Multibeam Echosounder Data Cleaning through a Hierarchic Adaptive and Robust Local Surfacing[J]. Computers&Geosciences, 2012, 46:330-339
    [11]
    陆丹,李海森,魏玉阔,等. 基于截断最小二乘估计的多波束异常测深值剔除方法[J].大地测量与地球动力学, 2012, 32(1):89-93

    Lu Dan, Li Haisen, Wei Yukuo, et al. A Method of Multi-beam Bathmetriy Outliers Eliminatin Based on Trimmed Least Square Estimation[J]. Journal of Geodesy and Geodynamics, 2012, 32(1):89-93
    [12]
    Chen C F, Li Y Y. A Robust Multiquadric Method for Digital Elevation Model Construction[J]. Mathematical Geosciences, 2013, 45(3):297-319
    [13]
    龚健雅.关于DTM中多面函数内插法几个问题的研究[J]. 测绘通报,1985(5):12-16

    Gong Jianya. Some Researches on Multiquadric Interpolation Problems[J]. Bulliten of Surveying and Mapping, 1985(5):12-16
    [14]
    Hoerl A E, Kannard R W, Baldwin K F. Ridge Regression:Some Simulations[J]. Communications in Statistics, 1975, 4(2):105-123
    [15]
    Kan B, Alpu Ö, Yazc B. Robust Ridge and Robust Liu Estimator for Regression Based on the LTS Estimator[J]. Journal of Applied Statistics, 2012, 40(3):644-655
    [16]
    Huber P J. Robust Statistics[M]. New York:Wiley Blackwell, 1986
    [17]
    Billings S D, Newsam G N, Beatson R K. SmoothFitting of Geophysical Data Using Continuous Global Surfaces[J]. Geophysics, 2002, 67(6):1823-1834
  • Related Articles

    [1]PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
    [2]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [3]WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052
    [4]YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482
    [5]LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037
    [6]LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368
    [7]WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485
    [8]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [9]Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76.
    [10]Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33.
  • Cited by

    Periodical cited type(19)

    1. 李雨森,李为乐,许强,许善淼,王运生. 2023年积石山Ms6.2级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版). 2024(01): 22-32+75 .
    2. 王乐洋,孙龙翔,许光煜. 利用GPS数据反演震源参数的单纯形组合加权距离灰狼优化算法. 武汉大学学报(信息科学版). 2024(07): 1140-1154 .
    3. 王乐洋,席灿. 贝叶斯框架下利用GPS数据反演震源参数的一种改进MCMC算法. 地球物理学报. 2024(09): 3367-3385 .
    4. 程燕,蒋亚楠,侯中健,曾锐,罗袆沅. 2016年和2022年青海门源强震活动的InSAR形变观测与区域强震危险性分析. 地质力学学报. 2024(06): 965-977 .
    5. 于仪,李雪,孙振,刘珠妹,张朝阳. 2022年青海门源地震震源机制与同震滑动分布研究. 大地测量与地球动力学. 2023(01): 46-51 .
    6. 刘洋,李航昊,熊露雲,温扬茂,杨九元. 联合地震位错模型和ESISTEM方法提取地震同震三维形变场. 武汉大学学报(信息科学版). 2023(03): 349-358+395 .
    7. 钟储汉. 基于InSAR技术的输气管道工程穿越煤矿采空区形变特征分析研究. 石油工程建设. 2023(03): 10-16 .
    8. 李媛,杨周胜,庞亚瑾,梁洪宝,刘峡. 2022年门源M_S6.9地震前断层活动及应力状态的数值模拟. 地震地质. 2023(06): 1286-1308 .
    9. 颜丙囤,季灵运,蒋锋云,殷海涛,陈其峰,连凯旋. InSAR数据约束的2022年1月8日青海门源M_S6.9地震发震构造研究. 地震工程学报. 2022(02): 450-457 .
    10. 郭东美,何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂. 武汉大学学报(信息科学版). 2022(05): 738-746 .
    11. 李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版). 2022(06): 887-897 .
    12. 何秀凤,高壮,肖儒雅,罗海滨,贾东振,章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望. 测绘学报. 2022(07): 1338-1355 .
    13. 梁斌,魏冠军. 利用InSAR技术观测台湾花莲地震断层滑动与运动机理分析. 测绘通报. 2022(09): 68-73 .
    14. 金鑫田,王世杰,姜鑫,张兰军. 2022年青海门源M_W6.9地震同震形变及断层滑动分布反演. 地球物理学进展. 2022(06): 2267-2274 .
    15. 付阿龙,安张辉,范莹莹,侯泽宇. 2022年1月8日青海门源县M_S 6.9地震地电场响应特征. 地震地磁观测与研究. 2022(06): 30-40 .
    16. 钟储汉,王强,王霞迎,张双成,牛玉芬. 基于InSAR技术的东营市地面沉降监测及多诱发因素分析. 大地测量与地球动力学. 2021(07): 727-731 .
    17. 温少妍,李成龙,李金. 2020年1月19日新疆伽师M_S6.4地震InSAR同震形变场特征及发震构造初步探讨. 内陆地震. 2020(01): 1-9 .
    18. 徐小波,连达军,白俊武. 基于CRInSAR与PSInSAR技术监测断裂带震间形变研究. 苏州科技大学学报(自然科学版). 2020(04): 51-58 .
    19. 万秀红,屠泓为,姚生海,殷翔,蔡丽雯. InSAR技术在青海地区地震中的应用研究. 高原地震. 2019(04): 14-20 .

    Other cited types(14)

Catalog

    Article views (1790) PDF downloads (321) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return