WANG Yunyan, HE Chu, ZHAO Shouneng, CHEN Dong, LIAO Mingsheng. Classification of SAR Images Based on Deep Deconvolutional Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1371-1376. DOI: 10.13203/j.whugis20140366
Citation: WANG Yunyan, HE Chu, ZHAO Shouneng, CHEN Dong, LIAO Mingsheng. Classification of SAR Images Based on Deep Deconvolutional Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1371-1376. DOI: 10.13203/j.whugis20140366

Classification of SAR Images Based on Deep Deconvolutional Network

Funds: The National Key Basic Research and Development Program(973 Program) of China, No.2013CB733404;the National Natural Science Foundation of China, Nos.41371342, 61331016; the Natural Science Foundation of Hubei Province.
More Information
  • Received Date: May 06, 2014
  • Published Date: October 04, 2015
  • Aim at the problem that the traditional feature extraction methods cannot get the high level structure features, this paper put forward a new soft probability pooling method, which is used in multilayer Deconvolutional Network, then high level structure features can be learned and be used for classification of SAR image. Firstly, the SAR image was divided into patches; then, the feature coding of each patch was obtained by means of multilayer Deconvolutional Networks, which can learn features suitable for image classification in different scale ; finally, the SAR image was classified through the features used in SVM classifier. Experimental results on the first batch domestic PolSAR images show that the classification accuracy rate of the proposed algorithm is superior.
  • [1]
    Maitre H. Synthetic Aperture Radar Image Processing[M]. Sun Hong. Beijing: Publishing House of Electronics Industry, 2005 (Maitre H. 合成孔径雷达图像处理[M]. 孙洪.北京: 电子工业出版社, 2005)
    [2]
    Wu Xiaohong, Xie Ming, Gan Ke,et al. Feature Extraction and Target Recognition of SAR Images[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(6): 1 275-1 280(吴晓红,谢明, 干可,等. SAR图像的特征提取与目标识别[J].四川大学学报(自然科学版), 2007, 44(6):1 275-1 280)
    [3]
    Wan Peng, Wang Jianguo, Huang Shunji. A Synthesis Method for SAR Image Target Detection[J]. Acta Electronica Sinica, 2001, 29(3):323-325(万朋, 王建国, 黄顺吉. SAR图像目标综合检测方法[J].电子学报, 2001, 29(3): 323-325)
    [4]
    Yin Hui. Research on Urban Scene Classification Method Using High Resolution Synthetic Aperture Radar Image Based on Local Feature Representation(殷慧. 基于局部特征表达的高分辨率SAR图像城区场景分类方法研究[D]. 武汉: 武汉大学,2010)
    [5]
    He Chu, Liu Ming, Xu Lianyu,et al. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J].Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49 (何楚, 刘明, 许连玉,等. 利用特征选择自适应决策树的层次SAR图像分类[J]. 武汉大学学报·信息科学版, 2012,37(1):46-49)
    [6]
    Huan Ruohong, Zhang Ping, Pan Yun. SAR Target Recognition Using PCA, ICA and Gabor Wavelet Decision Fusion[J]. Journal of Remote Sensing, 2012, 16(2): 262-274(宦若虹, 张平, 潘赟. ICA、PCA和Gabor小波决策融合的SAR目标识别[J]. 遥感学报, 2012, 16(2): 262-274)
    [7]
    He Chu, Liu Ming,Feng Qian, et al. PolInSAR Image Classification Based on Compressed Sensing and Multi-scale Pyramid[J]. Acta Automatic Sinica, 2011, 37(7): 820-827(何楚, 刘明, 冯倩,等. 基于多尺度压缩感知金字塔的极化干涉SAR图像分类[J]. 自动化学报, 2011, 37(7): 820-827)
    [8]
    Hinton G E, Salakhutdinov R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5 786):504-507
    [9]
    Zhang Xiaolei, Wu Ji. Deep Belief Networks Based Voice Activity Detection[J]. IEEE Transactions on Audio, Speech and Language Processing,2013,21(4):697-710
    [10]
    Vincent P, Larochelle H, Lajoie I, et al.Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion[J].Journal of Machine Learning Research, 2010,11:3 371-3 408
    [11]
    Yang J C, Yu K, Gong Y H,et al. Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009
    [12]
    Zeiler M D, Taylor G W, Fergus R. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning[C].IEEE International Conference on Computer Vision (ICCV), Barcelona,Spain,2011
  • Related Articles

    [1]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [2]ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337
    [3]XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
    [4]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [5]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [6]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [7]SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557.
    [8]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
    [9]Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.
  • Cited by

    Periodical cited type(1)

    1. 吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .

    Other cited types(3)

Catalog

    Article views (2102) PDF downloads (929) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return