LI Fenling, CHANG Qingrui, LIU Jiaqi, LIU Jing. SVM Classification with Multi-texture Data of ZY-102C HR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 455-461,486. DOI: 10.13203/j.whugis20140356
Citation: LI Fenling, CHANG Qingrui, LIU Jiaqi, LIU Jing. SVM Classification with Multi-texture Data of ZY-102C HR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 455-461,486. DOI: 10.13203/j.whugis20140356

SVM Classification with Multi-texture Data of ZY-102C HR Image

Funds: The National High Technology Research and Development Program of China(863 Program), No.2013AA102401; The PhD Programs Foundation of Ministry of Education of China, No.20120204110013.
More Information
  • Received Date: May 03, 2014
  • Published Date: April 04, 2016
  • Based on a ZY-102C HR Image, three kinds of textures, the variogram texture, gray level co-occurrence matrix texture, and gradient texture, were extracted. Then, we present a new SVM classification method with multi-source data by integrating the spectral information and these three different textures. The classification result was compared with results using Maximum Likelihood Classification(MLC) and Decision Tree(DT) method. The study shows that:(1) Variogram texture and gradient texture involved in multi-source data can effectively improve image classification precision with an overall accuracy from 85.14% to 87.43% and Kappa coefficient from 0.82 to 0.85;(2) The variation function of absolute value form provides a theoretical basis for the optimal texture window analysis, and textural features based on the average step can significantly improve classification accuracy with an overall accuracy from 75.2% to 87.14% and Kappa coefficient from 0.7 to 0.87;(3) Based on multi-source data, the SVM classification method for high spatial resolution remote sensing images can effectively overcome the fragmentation problems associated with traditional image classification methods. Our results were significantly superior to MLC and DT with an overall accuracy of 89.14% and Kappa coefficient of 0.87;(4) The resource satellite data ZY-10C has a certain stability and advantages for the extraction of winter wheat.
  • [1]
    Shu Ning. On the Texture of Multi-spectral and Super-dimensional Images[J]. Geomatics and Information Science of Wuhan University, 2004,29(4):292-295(舒宁.关于多光谱和高光谱影像的纹理问题[J].武汉大学学报·信息科学版,2004,29(4):292-295)
    [2]
    Yu Q, Gong P, Clinton N,et al. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(7):799-811
    [3]
    Shackelford A K, Davis C H. A Combined Fuzzy Pixel-based and Object-based Approach for Classification of High-resolution Multispectral Data over Urban Areas[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003,41(10):2354-2363
    [4]
    Zhang Qian, Huang Xin, Zhang Liangpei. Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):117-121(张倩, 黄昕, 张良培. 多尺度同质区域提取的高分辨率遥感影像分类研究[J]. 武汉大学学报·信息科学版, 2011, 36(1):117-121)
    [5]
    Yang Bo, Wang Mi. On-orbit Geometric Calibration Method of ZY-102C Panchromatic Camera[J]. Journal of Remote Sensing, 2013,17(5):1175-1190
    [6]
    Liu Gang, Xu Hongjiang, Ma Haitao, et al. Land Use Change Information Extraction Methods and Application of Land Resources High Resolution System Based on Resource 02C Satellite[J].Geomatics and Spatial Information Technology, 2013,36(4):65-68(刘刚,许宏健,马海涛,等.基于资源一号02C卫星数据的土地资源高分系统变化信息提取方法应用研究[J].测绘与空间地理信息,2013,36(4):65-68)
    [7]
    Wen Xiongfei, Chen Beiqing, Shen Shaohong, et al. Image Qualitu Evaluation for ZY-002C Satellite P/MS Sensor and the Potential of Its Application in Water Conservancy[J]. Journal of Yangtze River Scientific Research Institue, 2012,29(10):118-121(文雄飞,陈蓓青,申邵洪,等.资源一号02C卫星P/MS传感器数据质量评价及其在水利行业中的应用潜力分析[J].长江科学院院报,2012,29(10):118-121)
    [8]
    Moran E F. Land Cover Classification in a Complex Urban-rural Landscape with Quickbird Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(10):1159-1168
    [9]
    James R C. Spectral and Texture Classification of Single and Multiple Band Digital Images[J]. Computers and Geosciences, 1996,22(8):849-865
    [10]
    Su W, Li J, Chen Y, et al. Textural and Local Spatial Statistics for the Object Oriented Classification of Urban Areas Using High Resolution Imagery[J]. International Journal of Remote Sensing, 2008,29(11):3105-3117
    [11]
    Tao Yang.Texture Analysis Based Research on Terrain Morphology Characteristies[D]. Nanjing:Nanjing Normal University, 2011(陶旸. 基于纹理分析方法的DEM地形特征研究[D]. 南京:南京师范大学,2011)
    [12]
    Hu Wenying, Jiao Yuanmei. The Study Process of Texture Feature Extraction for Remote Sensing Image[J]. Yunnan Geographic Environment Research, 2007,19(3):66-71,76(胡文英,角媛梅.遥感图像纹理信息提取方法综述[J].云南地理环境研究,2007,19(3):66-71,76)
    [13]
    Li Peijun, Li Zhengxiao. Comparison of Three Geostatistical Texture Measures for Remotely Sensed Data Classification[J]. Geography and Geo-Information Science, 2003,19(4):89-92(李培军,李争晓. 三种地统计学图像纹理用于遥感图像分类的比较[J].地理与地理信息科学,2003,19(4):89-92)
    [14]
    Chica-Olmo M, Arbarca-Hernandez F. ComputingGeostatistical Image Texture for Remotely Sensed Data Classification[J]. Computers and Geosciences, 2000,26(4):373-383
    [15]
    Zhang Jinshui, He Chunyang, Pan Yaozhong, et al. The High Spatial Resolution RS Image Classification Based on SVM Method with the Multi-source Data[J].Journal of Remote Sensing, 2006,10(1):49-57(张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006,10(1):49-57)
    [16]
    Wu Zhaocong, Ouyang Qundong, Hu Zhongwen. Polarimetric SAR Image Classification Using Watershed Transformation and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1):7-10(巫兆聪, 欧阳群东, 胡忠文. 应用分水岭变换与支持向量机的极化SAR图像分类[J]. 武汉大学学报·信息科学版, 2012, 37(1):7-10)
    [17]
    Melgani F, Bruzzone L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2004, 42(8):1778-1790
    [18]
    Huang C, Davis L S, Townshend J R G. An Assessment of Support Vector Machines for Land Cover Classification[J]. International Journal of Remote Sensing, 2002,23(4):725-749
    [19]
    Curran P J. The Semivariogram in Remote Sensing:An Introduction[J]. Remote Sensing of Environment, 1988,24(3):493-507
    [20]
    Wu S, Xu B, Wang L. Urban Land-use Classification Using Variogram-based Analysis with an Aerial Photograph[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(7):813-822
    [21]
    Dell'Acqua F, Gamba P, Trianni G. Semi-automatic Choice of Scale-dependent Features for Satellite SAR Image Classification[J]. Pattern Recognition Letters, 2006, 27(4):244-251
    [22]
    Li Xiaotao,Pan Shibing,Song Xiaoning. Remote Sensing Image Classification Method Based on Geostatistics Texture[J]. Geography and Geo-Information Science, 2009,25(2):30-33(李小涛,潘世兵,宋小宁.基于地质统计学纹理特征的遥感影像分类方法研究[J].地理与地理信息科学,2009,25(2):30-33)
    [23]
    Soh L K, Tsatsoulis C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-occurrence Matrices[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):780-795
    [24]
    Srinivasan G N, Shobha G. Statistical Texture Analysis[J]. Proceedings of World Academy of Science, Engineering and Technology, 2008, 36:1264-1269
    [25]
    He Chunyang, Cao Xin, Shi Peijun, et al. Incorporation of Texture and Structure Information for Urban Building Detection by Using Landsat 7 ETM+ Panchromatic Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9):800-804(何春阳, 曹鑫, 史培军, 等. 基于Landsat7 ETM+全色数据纹理和结构信息复合的城市建筑信息提取[J]. 武汉大学学报·信息科学版, 2004, 29(9):800-804)
    [26]
    Zhou W, Troy A, Grove M. Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data[J]. Sensors, 2008, 8(3):1613-1636
    [27]
    Chang C C, Lin C J. LIBSVM:a Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(27):1-27
    [28]
    Congalton R G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data[J]. Remote Sensing of Environment, 1991,37(1):35-46
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (3356) PDF downloads (380) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return