LOU Yidong, ZHENG Fu, GONG Xiaopeng, GU Shengfeng. Evaluation of QZSS System Augmentation Service Performance in China Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 298-303. DOI: 10.13203/j.whugis20140273
Citation: LOU Yidong, ZHENG Fu, GONG Xiaopeng, GU Shengfeng. Evaluation of QZSS System Augmentation Service Performance in China Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 298-303. DOI: 10.13203/j.whugis20140273

Evaluation of QZSS System Augmentation Service Performance in China Region

Funds: The National Natural Science Foundation of China, No.41374034.
More Information
  • Received Date: January 18, 2015
  • Published Date: March 04, 2016
  • The Japanese QZSS(Quasi-Zenith Satellite System)is a satellite navigation system combing regional assistance with enhancement and covering Japan and surrounding area including partial area of China. The system broadcasts two enhancement signals L1-SAIF and LEX through IGSO and can provide high precision positioning in China region. From the aspects of availability, space signal accuracy and user kinematic PPP(precise point position), this paper comprehensivelyevaluate the performance of QZSS two enhance signals in region of China. With QZS-1 measured data, we executed experiments; the results show that, with 20°cut-off elevation, most areas of China, especially the eastern coastal area can observe the QZSS satellite about 80% of the day; a wide area differential message achieves considerable accuracy when compared with WAAS, as the URE(User Range Error) is about 0.56m and satisfies PPP needs with an accuracy of 1m. The horizontal accuracy is better than 1m; when compared with L1-SAIF, the accuracy of LEX was higher, the accuracy of orbit and clock was decimeter-class. The URE is about 0.4m, achieving sub-meter class positioning with an accuracy of 0.2 m in the horizontal and 0.5 m in the height dimensions.
  • [1]
    Heβelbarth A, Wanninger L. SBAS Orbit and Satellite Clock Corrections for Precise Point Positioning[J]. GPS Solutions, 2013, 17(4): 465-473
    [2]
    IS-GPS-200 (2010) Navstar GPS Space Segment/Navigation User Interfaces. Interface Specification IS-GPS-200 Revision E[R]. GPS Wing (GPSW) Systems Engineering and Integration, 2010
    [3]
    Japan Aerospace Exploration Agency. Interface Specifications for QZSS (IS-QZSS Ver.1.5) Available from the Following Site[OL]. http://qzss.jaxa.jp/isqzss/index_e.html, 2014
    [4]
    Rho H, Langley R B. The Usefulness of WADGPS Satellite Orbit and Clock Corrections for Dual-frequency Precise Point Positioning[C]. Proc ION [LL] GNSS, Fort Worth, TX, USA, 2007
    [5]
    Rho H, Langley R B. Dual-frequency GPS Precise Point Positioning with WADGPS Corrections[J]. Navigation, 2007, 54(2): 139-152
    [6]
    RTCA Inc. Minimum Operational Performance Standards for Global Positioning System/wide Area Augmentation System Airborneequipment, DO-229D[R]. Radio Technical Commission for Aeronautics (RTCA), Washington D C, USA, 2006
    [7]
    Sakai T, Fukushima S, Takeichi N, et al. Augmentation Performance of QZSS L1-SAIF Signal[C]. Proc ION National Technical Meeting, Fort Worth, TX, USA, 2007
    [8]
    Li Zuohu, Hao Jinming, Li Jianwen, et al. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010,35(1):17-20(李作虎, 郝金明, 李建文, 等. QZSS 对 GPS 区域性能增强分析[J]. 武汉大学学报·信息科学版, 2010,35(1): 17-20)
    [9]
    Shi Chuang, Zhao Qile, Geng Jiahui, et al. Recent Development of PANDA Software in GNSS Data Processing[C]. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan, China, 2008
  • Related Articles

    [1]JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
    [2]ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
    [3]BU Jinwei, ZUO Xiaoqing, JIN Lixin, CHANG Jun. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585, 611. DOI: 10.13203/j.whugis20180228
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and Methods for Evaluating Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 496-501, 508. DOI: 10.13203/j.whugis20160113
    [6]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
    [7]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [8]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
    [9]ZHANG Yajie, TANG Xu, ZHU Guorui. Improvement on Evaluation Model for Base Land Price[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 551-554.
    [10]TANG Xu, HU Shiyuan, LIU Yaolin. Design and Integration of Repository in Land Evaluation System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 433-437. DOI: 10.13203/j.whugis2004.05.013
  • Cited by

    Periodical cited type(22)

    1. 张奋,贾小林,阮仁桂,朱永兴,宗文鹏. QZSS区域卫星导航系统性能分析. 测绘与空间地理信息. 2024(10): 11-15 .
    2. 金彪,李锐,王盾,刘磊,原晋栩,李子潇. 星基增强系统单频服务性能评估方法. 北京航空航天大学学报. 2024(10): 3062-3073 .
    3. 寇瑞雄,杨树文. 基于广义延拓逼近法的QZSS卫星钟差内插精度分析. 全球定位系统. 2022(04): 73-78 .
    4. 金彪,魏巍,陈姗姗,李东俊. SBAS星历改正数及UDRE参数生成算法分析. 武汉大学学报(信息科学版). 2021(01): 111-117 .
    5. 朱轶群,吴继忠. QZSS L6E增强服务改正数支持的PPP性能评估. 测绘科学. 2021(02): 34-41 .
    6. 倪育德,王子成. 地球静止轨道卫星数对广域增强系统性能的影响. 科学技术与工程. 2021(16): 6737-6745 .
    7. 陈姗姗,金彪,赵立谦,夏川茹,王雷雷. SBAS电文时序动态编排算法. 北京航空航天大学学报. 2021(10): 1996-2005 .
    8. 糜晓龙,袁运斌,张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性. 测绘学报. 2021(10): 1290-1297 .
    9. 董洲洋,朱兆涵,徐健. 全球导航卫星系统时间精度分析. 测绘与空间地理信息. 2021(11): 17-19 .
    10. 寇瑞雄,杨树文. 准天顶卫星系统广播星历精度评定和拟合精度分析. 全球定位系统. 2021(05): 39-47 .
    11. 布金伟,左小清,金立新,常军. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估. 武汉大学学报(信息科学版). 2020(04): 574-585+611 .
    12. 郝茂森,贾小林,曾添,焦文海. QZSS亚米级增强服务和MSAS增强定位性能评估. 导航定位与授时. 2020(05): 91-99 .
    13. 陈健,Yue Dongjie,Zhu Shaolin,Liu Zhiqiang,Dai Jianbiao. Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning. High Technology Letters. 2020(03): 235-242 .
    14. 赵镇,陈刚,胡志刚. 星基增强系统L1频段信息服务性能分析. 中国地震. 2020(04): 912-923 .
    15. 喻思琪,张小红,郭斐,李昕,潘林,马福建. 卫星导航进近技术进展. 航空学报. 2019(03): 16-37 .
    16. 张玉英,谭荣建,布金伟,李国柱,张东升. BDS+QZSS双系统组合PPP性能评估. 城市勘测. 2019(02): 107-113 .
    17. 何巧,陈伟康. GPS/QZSS双系统组合定位性能分析. 北京测绘. 2019(05): 541-545 .
    18. 江永生. QZSS增强信号对GPS定位增强效果的分析. 北京测绘. 2019(08): 969-973 .
    19. 徐炜,贾雪,王涛. QZSS/IRNSS对BDS在中国定位性能增强的评估. 测绘工程. 2018(01): 31-36 .
    20. 张文峰. 星基增强信号的GPS实时精密单点定位算法. 测绘科学. 2018(08): 62-67 .
    21. 毛琪,麻智超,卢满宏,王松. GAGAN系统在北京地区定位性能测试与评估. 遥测遥控. 2017(04): 53-57 .
    22. 张琳. QZSS导航系统在亚太地区的初步性能评估. 中国惯性技术学报. 2017(05): 618-623 .

    Other cited types(17)

Catalog

    Article views (2795) PDF downloads (720) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return