CAO Jianfeng, ZHANG Yu, HU Songjie, HUANG Yong, CHEN Ming. An Analysis of Precise Positioning and Accuracy of the CE-3 Lunarlander Soft Landing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 274-278. DOI: 10.13203/j.whugis20140123
Citation: CAO Jianfeng, ZHANG Yu, HU Songjie, HUANG Yong, CHEN Ming. An Analysis of Precise Positioning and Accuracy of the CE-3 Lunarlander Soft Landing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 274-278. DOI: 10.13203/j.whugis20140123

An Analysis of Precise Positioning and Accuracy of the CE-3 Lunarlander Soft Landing

Funds: The National Natural Science Foundation of China, Nos. 11173005, 11373013, 11203003, 11303001, 61304233.
More Information
  • Received Date: July 05, 2014
  • Published Date: February 04, 2016
  • In December, 2013, the Chinese lunar lander Chang'E-3 made a soft landing on the Moon successfully. Its precision positioning is a basic requirement in the analysis of scientific data. In this paper, the modeling of the precise observation equation and the statistical positioning method are first described briefly. Second, using the limited tracking data of the lander, the statistical positioning of the lander was performed and the positioning accuracy analyzed by three different methods. The results indicate that the determined altitude of the lander was approximately 4.5 m different from the latest lunar topographical model. Compared with the lander location observed from the lunar reconnaissance orbiter camera, there is a deviation less than 100 m in the three dimensions. We subsequeently analyze the positioning ability under current tracking conditions using the covariance analysis theory. These results show that the systematic error in the ranging data was the main limiting factor that restricts lander positioning accuracy, and an accuracy of 10 m positioning solution may be obtained if this bias is removed.
  • [1]
    Song Min, Yuan Yunbin. Autonomous Integrated Navigation for Lunar Soft Landing[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9):1013-1016(宋敏, 袁运斌. 月球软着陆自主组合导航研究[J]. 武汉大学学报·信息科学版, 2010, 35(9):1013-1016)
    [2]
    Huang Y, Hu X, Li P, et al. Precise Positioning of the Chang'E-3 Lunar Lander Using a Kinematic Statistical Method[J]. Chinese Science Bulletin, 2012, 57(35):4545-5484
    [3]
    Tang Geshi. Science and Technology Problems in Tracking and Orbit Determination for Chang'E Probes[J]. Journal of Spacecraft TT&C Technology, 2013, 32(3):189-195(唐歌实.嫦娥探测器轨道测定中的科学与技术问题[J].飞行器测控学报,2013, 32(3):189-195)
    [4]
    Liu Lin, Wang Xin. An Orbital Dynamics of Lunar Probe[M]. Beijing:National Detence Industry Press 2006:23-26(刘林, 王歆. 月球探测器轨道力学[M]. 北京:国防工业出版社, 2006:23-26)
    [5]
    Moyer T D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation[M]. California:Jet Propulsion Laboratory, 2000
    [6]
    Folkner W M, Williams J G, Boggs D H. The Planetary and Lunar Ephemeris DE421,IOM 343R-08-003[R]. Jet Propulsion Laboratory, California, 2008
    [7]
    Archinal B A, A'hearn M F, Bowell E, et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements:2009[J]. Celestial Mechanics Dynamical Astronomy, 2011,109:101-135
    [8]
    Li P J, Hu X G, Huang Y, et al. Orbit Determination for Chang'E-2 Lunar Probe and Evaluation of Lunar Gravity Models[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(3):514-522
    [9]
    Cao Jianfeng, Hu Songjie, Huang Yong, et al. Orbit Determination and Analysis for Chang'E-2 Extended mission[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1029-1033(曹建峰,胡松杰,黄勇,等.嫦娥二号卫星日地拉格朗日L2点探测轨道定轨分析[J].武汉大学学报·信息科学版,2013, 38(9):1029-1033)
    [10]
    Li Jinling, Liu Li, Qiao Shubo. Positioning Analysis of Observations from X-Band Monitoring and Control System Experiments in the Chang'E-2 Project[J]. Journal of Geomatics Science and Technology, 2011, 28(2):84-87(李金岭,刘鹂,乔书波.嫦娥二号卫星X波段测控体制时延定位分析[J].测绘科学技术学报,2011, 28(2):84-87)
    [11]
    Li P J, Hu X G, Huang Y, et al. Orbit Determination for Chang'E-2 Lunar Probe and Evaluation of Lunar Gravity Models[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(3):514-522
    [12]
    Kreslavsky M A, Head J W, Neumann G A, et al. Lunar Topographic Roughness Maps from Lunar Orbiter Laser Altimeter (LOLA) Data:Scale Dependence and Correlation with Geologic Features and Units[J]. Icarus, 2013, 226:52-66
    [13]
    NASA Images of Chang'E-3 Landing Site[EB/OL]. NASA/GSFC/Arizona State University. 2013[2014-01-23]. http://www.nasa.gov/content/nasa-images-of-change-3-landing-site/
    [14]
    Cook A C, Watters T R, Robinson M S, et al. Lunar Polar Topography Derived from Clementine Stereoimages[J]. Joumal of Geophysical Research, 2000,105:12023-12033
    [15]
    Tapley B D, Schutz B E, George H B. Statistical Orbit Determination[M]. California:Elsevier Academic Press, 2004
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return