HAO Weifeng, YE Mao, LI Fei, ZHANG Shengkai, ZHU Tingting. Feasibility for a Deep Space Monitoring and Controlling Station at the Antarctic Great-Wall Station[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1360-1365. DOI: 10.13203/j.whugis20130720
Citation: HAO Weifeng, YE Mao, LI Fei, ZHANG Shengkai, ZHU Tingting. Feasibility for a Deep Space Monitoring and Controlling Station at the Antarctic Great-Wall Station[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1360-1365. DOI: 10.13203/j.whugis20130720

Feasibility for a Deep Space Monitoring and Controlling Station at the Antarctic Great-Wall Station

Funds: The Open Research Fund Program of Key Laboratory of Polar Surveying and Mapping, National Administration of Surveying, Mapping and Geoinformation, No.201202; the National Natural Science Foundation of China, No. 41174019; Chinese Polar Environment Comprehensive Investigation and Assessment Programms, No.CHINARE2013-04-01; LIESMARS Special Research Funding; the Special Fund for Basic Scientific Research of Central Colleges, No.2042014kf0051.
More Information
  • Received Date: July 13, 2014
  • Published Date: October 04, 2015
  • In deep space exploration, the effective operation of a monitoring and controlling station is an important guarantee for the entire exploration task. In this paper, the foundation of a deep space monitoring and control station in the Antarctic Great-Wall station is proposed, and its feasibility is analyzed in terms of required improvements to the communication structures, as well as the relevant geological conditions, electromagnetic environment, and climatic conditions. The results show that: ① The lunar south pole is a hot spot for lunar surface detection; the region is analyzed in terms of improvements in communication conditions. The influence on communication conditions from topography between the lunar rover at the lunar South Pole and the Great-Wall tracking station is less than that between the lunar rover at the lunar South Pole and the domestic tracking stations. Also, the observation period is complementary so that the impact of the Earth's rotation on observation stations away from the Moon can be reduced. ② The geological conditions, electromagnetic environment, and climatic conditions are suitable for the construction of monitoring and controlling station in the Antarctic Great-Wall station.③ The conditions of the Antarctic Great-Wall Station are ripe after thirty years of construction.
  • [1]
    Wei Erhu, Liu Jingnan, Huang Jinsong. Research on the Establishing Project for Chinese Deep Space Surveying and Control Network[J].Geomatics and Information Science of Wuhan University,2005, 30(7):592-596 (魏二虎,刘经南,黄劲松.中国深空测控网建立方案的研究[J]. 武汉大学学报·信息科学版,2005,30(7):592-596)
    [2]
    Key Lab for Polar Surveying and Mapping Science,SBSM. Atlas of the Arctic and Antarctica[M].Beijing:Sinomaps Press,2009(极地测绘科学国家测绘局重点实验室.南北极地图集[M].北京:中国地图出版社,2009)
    [3]
    Hao Weifeng, Li Fei, Ye Mao, et al. Improvement of Communication Condition from Lunar Rover to Deep Space Tracking Station in Antarctic Great-Wall Station[J].Geomatics and Information Science of Wuhan University,2012,37(11):1 364-1 368(郝卫峰,李斐,叶茂,等. 南极长城站建立深空跟踪站对月球车地-月通信条件的改善[J].武汉大学学报·信息科学版,2012, 37(11): 1 364-1 368)
    [4]
    Smith D E, Zuber M T, Jackson G B, et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission[J]. Space Science Review, 2010,150:209-241
    [5]
    Hao Weifeng, Ye Mao, Li Fei, et al. The Communication Accessibility of the Lunar Rover Based on DEM Derived from Chang'E-1[J].Journal of Astronautics,2012,33(10): 1 453-1 459(郝卫峰,叶茂,李斐,等. 基于嫦娥一号卫星获取的DEM研究月球车通信的可达性[J].宇航学报, 2012, 33(10): 1 453-1 459)
    [6]
    Lu Yi. Design and Evaluation of Lunar Relay Communication System and Constellation[D]. Chengdu: University of Electronic Science and Technology of China,2012(路毅.月球中继通信与导航星座设计与分析[D].成都:电子科技大学,2012)
    [7]
    Chang Lijun, Ding Zhifeng, Sun Weiguo. SeisMological Observation at the Great-Wall Station During the 27th Chinese Antarctic Expedition in the Summer[J].Chinese Journal of Polar Research,2012,24(1):95-100(常利军,丁志峰,孙为国. 第27次南极科学考察度夏期间长城站地震观测[J].极地研究,2012,24(1):95-100)
    [8]
    Zheng Xianchang. The Engineering Geological Conditions Investigating and the Scheme for the Building Foundations in the Great-Wall Station[J].Geotechnical Investigation and Surveying, 2007 (2):14-18(郑先昌.中国长城站区工程地质勘查及建筑适宜性区划研究[J].工程勘查,2007(2):14-18)
    [9]
    Liu Hong, Song Jianbo, Zuo Shuangying. Optimizing Fast Sites by the Fuzzy Comprehensive Judgement in Guizhou, China[J]. Journal of Geological Hazards and Environment Preservation,2007,18(1):88-92(刘宏,宋建波,左双英,等. 用模糊综合评判法优选大射电望远镜候选台址[J]. 地质灾害与环境保护,2007,18(1):88-92)
    [10]
    Zhang Naitong, Li Hui, Zhang Qinyu. Thought and Developing Trend in Deep Space Exploration and Communication[J]. Journal of Astronautics,2007, 28(4):786-793 (张乃通,李晖,张钦宇.深空探测通信技术的发展趋势及思考[J].宇航学报,2007,28(4):786-793)
  • Related Articles

    [1]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [2]ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
    [3]FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066
    [4]FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170
    [5]LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387
    [6]ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062
    [7]ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242.
    [8]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
    [9]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [10]ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244.
  • Cited by

    Periodical cited type(6)

    1. 李渊,白焕霞,梁嘉祺,李锐,杜亚男,杨盟盛. 虚拟旅游空间记忆匹配性与影响因素研究——基于眼动实验和认知地图的分析. 旅游科学. 2024(10): 39-61 .
    2. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(22): 59-64+115 .
    3. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(20): 59-64+115 .
    4. 晋良海,方梅,张倩,陈云,邵波. 公共通道行人非理性切变行为效应仿真. 系统工程学报. 2023(05): 601-613 .
    5. 应申,苏俊如,刘之林,张雯博. 空间路线描绘:以大学生入学路线的心像地图为例. 测绘工程. 2022(01): 1-11 .
    6. 刘兵,孟立秋. 扩展现实与地理空间认知研究进展与展望. 武汉大学学报(信息科学版). 2022(12): 2047-2053 .

    Other cited types(7)

Catalog

    Article views (1305) PDF downloads (416) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return