SUN Yafei, JIANG Liming, LIU Lin, SUN Yongling, WANG Hansheng. Generating and Evaluating Digital Terrain Model with TanDEM-X Bistatic SAR Interferometry[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 100-105. DOI: 10.13203/j.whugis20130618
Citation: SUN Yafei, JIANG Liming, LIU Lin, SUN Yongling, WANG Hansheng. Generating and Evaluating Digital Terrain Model with TanDEM-X Bistatic SAR Interferometry[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 100-105. DOI: 10.13203/j.whugis20130618

Generating and Evaluating Digital Terrain Model with TanDEM-X Bistatic SAR Interferometry

Funds: The National Natural Science Foundation of China,Nos. 41274024, 41431070, 41321063; the National Basic Research Program of China, No. 2012CB957702; the Hundred Talents Program of the Chinese Academy of Sciences,No. Y205771077; the DLR TanDEM-X AO Project,No. XTI_LAND0413; The ESA-MOST Dragon-3 Cooperation Program,No. 10674.
More Information
  • Received Date: October 27, 2013
  • Published Date: January 04, 2016
  • The paper introduces the bistatic SAR system of the TanDEM-X/TerraSAR-X, especially focusing on its flexible data acquisition model and the special advantages of a zero-time baseline. We present a bistatic InSAR processing method for DEM generation with TanDEM-X/TerraSAR-X data, highlighted by a phase difference strategy as a means of differencing bistatic interferograms and simulated phase from an external DEM, e.g. SRTM DEM. This strategy reduces the residual phase and improves the efficiency and the precision of phase unwrapping. We take account of the bistatic geometry and the corresponding zero Doppler time in SAR interferometric processing. The absolute phase offset was calibrated with some external ICESat points. A case study was carried out to generate the DEM product over the Puruogangri Ice Field in the Tibetan Plateau. Compared with the SRTM-X DEM and ICESat elevation, our preliminary results demonstrate the great potential of the TanDEM-X bistatic InSAR technology for mapping surface topography.
  • [1]
    Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. Reviews of geophysics, 2007, 45(2):1-33
    [2]
    Liao M S, Jiang H J, Wang Y, et al. Improved Topographic Mapping Through High-Resolution SAR Interferometry with Atmospheric Effect Removal[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80(1):72-79
    [3]
    Mura J C, Pinheiro M, Rosa R, et al. A Phase-offset Estimation Method for InSAR DEM Generation Based on Phase-offset Functions[J]. Remote Sensing, 2012, 4(3):745-761
    [4]
    Lin L, Jiang L M, Wang H S. Extraction of Glacier Surface Elevation and Velocity in High Asia with ERS-1/2 Tandem SAR Data:Application to Puruogangri Ice Field, Tibetan Plateau[C]. International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012
    [5]
    Jiang Houjun, Liao Mingsheng, Zhang Lu. High Resolution SAR Interferometric DEM Reconstruction with COSMO-SkyMed Tandem Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1 055-1 058(蒋厚军, 廖明生,张路. 高分辨率雷达卫星 COSMO-SkyMed 干涉测量生成 DEM 的实验研究[J]. 武汉大学学报·信息科学版, 2011, 36(9):1 055-1 058)
    [6]
    Rossi C,Gonzalez F R, Fritz Thomas, et al. TanDEM-X Calibrated Raw DEM Generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73(1):12-20
    [7]
    Sun Yafei, Jiang Liming. TanDEM-X Bistatic SAR Interferometry and Its Research Progress[J]. Remote Sensing for Land and Resources, 2015, 27(1):16-22(孙亚飞,江利明. TanDEM-X双站SAR干涉测量及应用展望[J]. 国土资源遥感, 2015, 27(1):16-22)
    [8]
    Krieger G, Moreira A, Fiedler H, et al. TanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3 317-3 341
    [9]
    Martone M, Brautigam B, Rizzoli P, et al. Coherence Evaluation of TanDEM-X Interferometric Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:21-29
    [10]
    Yi Chaolu, Li Xiaoze, Qu Jianjun, et al. Quaternary Glaciations in Puruogangri:the Largest Modern Ice Filed in Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(5):491-497(易朝路, 李孝泽, 屈建军,等.青藏高原现代最大冰原区第四纪冰川作用[J]. 冰川冻土, 2003, 25(5):491-497)
    [11]
    Yi C L, Li X Z, Qu J J. Quaternary Glaciation of Puruogangri:the Largest Modern Ice Field in Tibet[J]. Quaternary International, 2002, 97:111-121
    [12]
    Shen Qiang, Chen Gang, E Dongchen, et al. Recent Elevation Changes on the Lambert-Amery System in East Antarctica from ICESat Crossover Analysis[J]. Chinese Journal of Geophysics, 2011, 54(8):1 983-1 989(沈强,陈刚,鄂栋臣,等. 基于ICESat轨道交叉点分析的东南极Lambert-Amery系统当前高程变化特征分析[J]. 地球物理学报, 2011, 54(8):1 983-1 989)
    [13]
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letter, 1998, 25(21):4 035-4 038
    [14]
    Costantini M. A Novel Phase Unwarpping Method Based on Network Programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821
    [15]
    Gonzalez J H, Antony J M, Bachmann M, et al. Bi-static System and Baseline Calibration in TanDEM-X to Ensure the Global Digital Elevation Model Quality[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73(9):4-11
    [16]
    Martone M, Brautigam B, Krieger G. Decorrelation Effects in Bistatic TanDEM-X Data[C]. International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012
    [17]
    Eineder M, Jaber W A, Floricioiu D, et al. Glacier Flow and Topography Measurements with TerraSAR-X and TanDEM-X[C]. International Geoscience and Remote Sensing Symposium, Vancouver, Canadian, 2011
    [18]
    Pandey P, Venkataraman G. Comparison of DEMs Derived from TanDEM-X and SRTM-C for Himalayan Terrain[C]. International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013
    [19]
    Deo P, Manickam S, Rao Y S, et al. Evaluation of Interferometric SAR DEMs Generated Using TanDEM-X Data[C]. International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013
  • Related Articles

    [1]LIU Cong, WANG Zhengtao, ZHANG Huawei, XU Zhiming. Refining Local Earth's Gravity in Spatial Domain with Residual Terrain Modelling Technique[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 369-376. DOI: 10.13203/j.whugis20200079
    [2]LI Zhenhong, LI Peng, DING Dong, WANG Houjie. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942. DOI: 10.13203/j.whugis20180295
    [3]HU Peng, GAO Jun. The Digital Generalization Principle of Digital Elevation Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 940-942.
    [4]LIU Xuejun, ZHANG Ping. Effective Scale of Slope and Aspect Derived from Grid-based Digital Elevation Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1254-1258.
    [5]LIU Shuiqiang, CHEN Jiye, ZHU Hongpeng. Information Disguising for Digital Elevation Model Data via Empirical Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 652-655.
    [6]LI Jiancheng, FAN Chunbo, CHU Yonghai, ZHANG Shengkai. Using ICESAT Altimeter Data to Determine the Antarctic Ice Sheet Elevation Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 226-228.
    [7]FENG Wenhao, SHANG Haoliang, HOU Wenguang. A Digital Distortion Model for all Kinds of Imaging Systems[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 99-103.
    [8]BAI Jianjun, ZHAO Xuesheng, CHEN Jun. Digital Elevation Modeling Based on Hierarchical Subdivision of the Triangular Meshes on Ellipsoidal Surface[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 383-387.
    [9]SHU Ning. Some Aspects on the Theories of SAR Interferometry[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 155-159.
    [10]Sun Jiabing, Liu Jinn. The Extraction of Elevation Information of Ice-covered Surface in Zhongshan Station Area of Antarctica[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 54-58.
  • Cited by

    Periodical cited type(15)

    1. 雷秋佳,刘婧,曹新运. 利用机载LiDAR数据的开放DEM产品精度评估. 武汉大学学报(信息科学版). 2025(01): 153-163 .
    2. 李达,曹宇佳,郝连秀,关海涛. 天绘二号和资源三号卫星提取DSM精度对比分析. 测绘与空间地理信息. 2024(S1): 115-118 .
    3. 席梦丹,张永洪. 基于GF-3精细条带数据生产DEM的精度分析. 测绘标准化. 2024(02): 101-106 .
    4. 牛宵,江娜. 基于地理国情监测数据的景观生态评价研究. 测绘标准化. 2024(03): 103-109 .
    5. 黎伟,焦健,韩海姣,曾琪明,陈亚飞. 双站与重轨InSAR数据融合获取DEM的方法. 遥感信息. 2023(02): 10-17 .
    6. 符龙崇,朱建军,付海强,解清华,韩文涛. 面向双站SAR系统的长波PolInSAR目标自适应分解. 遥感技术与应用. 2023(05): 1017-1027 .
    7. 庞书剑,柯长青,周兴华,张其兵,范宇宾,喻薛凝. InSAR与激光雷达测高集成的马兰山冰川物质平衡变化. 遥感学报. 2022(10): 2094-2105 .
    8. 陈刚,钱方明,刘志铭,楼良盛. 天绘二号卫星双基成像几何模型改正算法. 测绘学报. 2022(12): 2417-2424 .
    9. 向建冰,吕孝雷,付希凯,薛飞扬,云烨,叶宇,何可. 天绘二号双星InSAR成像与DSM生成技术. 测绘学报. 2022(12): 2493-2500 .
    10. 李东,侯西勇. 沿海低山丘陵区DEM提取及精度分析. 测绘通报. 2021(S1): 61-64 .
    11. 姬鑫慧,叶庆华,聂维,陈益民,NAUMANA li. 基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000—2014). 山地学报. 2021(05): 631-645 .
    12. 吕雯雪,李建章. 基于中继通信技术的灾后区域地形特征点无人机精细测绘研究. 灾害学. 2020(04): 202-205 .
    13. 孙和平,徐建桥,江利明,刘根友,郑勇,闫昊明,鲍李峰,胡小刚,周江存. 现代大地测量及其地学应用研究进展. 中国科学基金. 2018(02): 131-140 .
    14. 王媛,梁涛. 一种利用DEM数据进行数字线划图生产的方法. 测绘通报. 2017(01): 139-143 .
    15. 陈立福,王思雨,袁志辉,王静,邢学敏,武鸿. 非线性ECS自配准成像算法中相位保持精度分析. 中国科学院大学学报. 2017(05): 640-646 .

    Other cited types(7)

Catalog

    Article views (1794) PDF downloads (855) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return