LI Zhenhong, LI Peng, DING Dong, WANG Houjie. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942. DOI: 10.13203/j.whugis20180295
Citation: LI Zhenhong, LI Peng, DING Dong, WANG Houjie. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942. DOI: 10.13203/j.whugis20180295

Research Progress of Global High Resolution Digital Elevation Models

Funds: 

The National Natural Science Foundation of China 41806108

The National Natural Science Foundation of China 41606066

the National Key Research and Development Program of China 2016YFA0600903

Shandong Provincial Natural Science Foundation ZR2016DB30

China Postdoctoral Science Foundation 2016M592248

Qingdao Indigenous Innovation Program 16-5-1-25-jch

Fundamental Research Funds for the Central Universities 201713039

Qingdao Postdoctoral Application Research Project 

Natural Environment Research Council COMET: come30001

Natural Environment Research Council LICS: NE/K010794/1

Natural Environment Research Council CEDRRIC: NE/N012151/1

Green Card Talent Program of Ocean University of China 

More Information
  • Author Bio:

    LI Zhenhong, PhD, professor, main interests include imaging Geodesy and its applications to geohazards, precison agriculture and infrastructure stability. E-mail: Zhenhong.Li@newcastle.ac.uk

  • Corresponding author:

    LI Peng, PhD. E-mail: pengli@ouc.edu.cn

  • Received Date: July 24, 2018
  • Published Date: December 04, 2018
  • There are many geologic processes that shape the surface of the Earth, and the evolution of topography provides us clues to the interior of the Earth and the forces that exist there. Firstly, in this paper, the origin and definition of digital elevation models (DEMs) are briefly introduced followed by their common acquisition methods according to ground-based, shipborne, airborne and spaceborne observation platforms. Secondly, the main characteristics of existing global high resolution DEMs are demonstrated with emphasis on nine commonly-used global DEMs. Thirdly, a common procedure for DEM quality evaluation is presented. Fourthly, the potential applications of DEMs to geological disaster monitoring and coastal vulnerability analysis are described. Taking the ongoing DEM projects in USGS (United States Geological Survey) and DLR (Deutsches Zentrum für Luft-und Raumfahrt) as examples, the requirements for high precision high resolution globally consistent and homogeneous DEMs and topobathemetric elevation models are discussed. Finally, the future trends and prospects of global high resolution DEMs are summarized. We find that fusion of multi-source remote sensing image data (such as LiDAR, SAR and optical remote sensing) has become an important approach to ge-nerate global multi-scale seamless DEMs, and the use of unmanned aircrafts and ships as observation platforms makes it possible to shorten the renewal cycle of high precision high resolution DEMs.
  • [1]
    Miller C L, Laflamme R A. The Digital Terrain Model-Theory and Applications[J]. Photogrammetric Engineering, 1958, 24(3):433-442 http://citeseerx.ist.psu.edu/showciting?cid=247316
    [2]
    李志林, 朱庆, 谢潇.数字高程模型[M]. 3版.北京:科学出版社, 2017

    Li Zhilin, Zhu Qing, Xie Xiao. Digital Elevation Model[M]. 3rd ed. Beijing:Science Press, 2017
    [3]
    汤国安, 李发源, 刘学军.数字高程模型教程[M]. 3版.北京:科学出版社, 2016

    Tang Guo'an, Li Fayuan, Liu Xuejun. Digital Elevation Model Tutorial[M]. 3rd ed. Beijing:Science Press, 2016
    [4]
    李德仁, 丁霖, 邵振峰.关于地理国情监测若干问题的思考[J].武汉大学学报·信息科学版, 2016, 41(2):143-147 http://ch.whu.edu.cn/CN/abstract/abstract3447.shtml

    Li Deren, Ding Lin, Shao Zhenfeng. Reflections on Issues in National Geographical Conditions Monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):143-147 http://ch.whu.edu.cn/CN/abstract/abstract3447.shtml
    [5]
    李德仁, 王艳军, 邵振峰.新地理信息时代的信息化测绘[J].武汉大学学报·信息科学版, 2012, 37(1):1-6 http://ch.whu.edu.cn/CN/abstract/abstract80.shtml

    Li Deren, Wang Yanjun, Shao Zhenfeng. Geo-Informatization of New Geographic Information Era[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1):1-6 http://ch.whu.edu.cn/CN/abstract/abstract80.shtml
    [6]
    李德仁, 苗前军, 邵振峰.信息化测绘体系的定位与框架[J].武汉大学学报·信息科学版, 2007, 32(3):189-192 http://ch.whu.edu.cn/CN/abstract/abstract1840.shtml

    Li Deren, Miao Qianjun, Shao Zhenfeng. Orientation and Framework of Geo-Informatization System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3):189-192 http://ch.whu.edu.cn/CN/abstract/abstract1840.shtml
    [7]
    李德仁, 龚健雅, 朱欣焰, 等.我国地球空间数据框架的设计思想与技术路线[J].武汉大学学报·信息科学版, 1998, 23(4):297-303 http://ch.whu.edu.cn/CN/abstract/abstract4309.shtml

    Li Deren, Gong Jianya, Zhu Xinyan, et al. Design and Implementaion of Digital Geospatial Data Framework in China[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4):297-303 http://ch.whu.edu.cn/CN/abstract/abstract4309.shtml
    [8]
    李德仁, 姚远, 邵振峰.海岛礁及周边复杂环境动态三维建模[J].武汉大学学报·信息科学版, 2012, 37(11):1261-1265 http://ch.whu.edu.cn/CN/abstract/abstract362.shtml

    Li Deren, Yao Yuan, Shao Zhenfeng. Dynamic 3D Modeling of Island, Reef and Surrounding Complex Environment[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11):1261-1265 http://ch.whu.edu.cn/CN/abstract/abstract362.shtml
    [9]
    李德仁, 沈欣, 龚健雅, 等论我国空间信息网络的构建[J].武汉大学学报·信息科学版, 2015, 40(6):711-715, 766 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml

    Li Deren, Shen Xin, Gong Jianya, et al. On Construction of China's Space Information Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):711-715, 766 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml
    [10]
    柳林, 李德仁, 李万武, 等.从地球空间信息学的角度对智慧地球的若干思考[J].武汉大学学报·信息科学版, 2012, 37(10):1248-1251 http://ch.whu.edu.cn/CN/abstract/abstract343.shtml

    Liu Lin, Li Deren, Li Wanwu, et al. Thoughts on Smarter Planet from the View of Geomatics[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1248-1251 http://ch.whu.edu.cn/CN/abstract/abstract343.shtml
    [11]
    Chevalier M L, Pan J, Li H, et al. First Tectonic-Geomorphology Study Along the Longmu-Gozha Co Fault System, Western Tibet[J]. Gondwana Research, 2017, 41:411-424 doi: 10.1016/j.gr.2015.03.008
    [12]
    方莉娜, 杨必胜.车载激光扫描的三维道路自动提取方法[J].测绘学报, 2013, 42(2):260-267 http://d.old.wanfangdata.com.cn/Conference/8916216

    Fang Lina, Yang Bisheng. Automated Extracting 3D Roads from Mobile Laser Scanning Point Clouds[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):260-267 http://d.old.wanfangdata.com.cn/Conference/8916216
    [13]
    余晓红.地图扫描数字化的误差分析[J].测绘科学, 2001, 26(4):49-52 doi: 10.3771/j.issn.1009-2307.2001.04.014

    Yu Xiaohong. Errors Analysis of Map Scanning Digitizing[J]. Science of Surveying and Mapping, 2001, 26(4):49-52 doi: 10.3771/j.issn.1009-2307.2001.04.014
    [14]
    郝向阳, 钱曾波.地图扫描数字化的点位精度分析[J].测绘学报, 1996, 25(1):46-52 doi: 10.3321/j.issn:1001-1595.1996.01.007

    Hao Xiangyang, Qian Zengbo. The Accuracy Ana-lysis of Map Digitizing Based on Scanned Images[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(1):46-52 doi: 10.3321/j.issn:1001-1595.1996.01.007
    [15]
    Becker J J, Sandwell D T, Smith W H F, et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution:SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4):355-371 doi: 10.1080/01490410903297766
    [16]
    翟国君, 黄谟涛.海洋测量技术研究进展与展望[J].测绘学报, 2017, 46(10):1752-1759 doi: 10.11947/j.AGCS.2017.20170309

    Zhai Guojun, Huang Motao. The Review of Deve-lopment of Marine Surveying Technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1752-1759 doi: 10.11947/j.AGCS.2017.20170309
    [17]
    赵建虎, 欧阳永忠, 王爱学.海底地形测量技术现状及发展趋势[J].测绘学报, 2017, 46(10):1786-1794 doi: 10.11947/j.AGCS.2017.20170276

    Zhao Jianhu, Ouyang Yongzhong, Wang Aixue. Status and Development Tendency for Seafloor Terrain Measurement Technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794 doi: 10.11947/j.AGCS.2017.20170276
    [18]
    Gutierrez F J, Gutowski M, Ganther S, et al. Deep Rippled Bedforms in Loch Ness:Evidence from An AUV Bathymetry Survey[J]. IEEE/OES Autonomous Underwater Vehicles (AUV), 2014, doi: 10.1109/AUV.2014.7054406
    [19]
    Hiller T, Steingrimsson A, Melvin R, Expanding the Small AUV Mission Envelope; Longer, Deeper and More Accurate[J]. IEEE/OES Autonomous Underwater Vehicles (AUV), 2012:1-4 http://ieeexplore.ieee.org/document/6380725/
    [20]
    张剑清, 潘励, 王树根.摄影测量学[M]. 2版.武汉:武汉大学出版社, 2009

    Zhang Jianqing, Pan Li, Wang Shugen. Photogrammetry[M]. 2nd ed. Wuhan:Wuhan University Press, 2009
    [21]
    李德仁, 王密, 潘俊, 等.无缝立体正射影像数据库的概念、原理及其实现[J].武汉大学学报·信息科学版, 2007, 32(11):950-954 http://ch.whu.edu.cn/CN/abstract/abstract2029.shtml

    Li Deren, Wang Mi, Pan Jun, et al. Concept, Principle and Implementation of Seamless Stereo Orthimage Database[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):950-954 http://ch.whu.edu.cn/CN/abstract/abstract2029.shtml
    [22]
    Baltsavias E P, Favey E, Bauder A, et al. Digital Surface Modelling by Airborne Laser Scanning and Digital Photogrammetry for Glacier Monitoring[J]. The Photogrammetric Record, 2001, 17(98):243-273 doi: 10.1111/phor.2001.17.issue-98
    [23]
    宁津生, 刘经南, 李德仁, 等.测绘学概论[M]. 3版.武汉:武汉大学出版社, 2016

    Ning Jinsheng, Liu Jingnan, Li Deren, et al. Introduction to Surveying and Mapping[M]. 3rd ed.Wuhan:Wuhan University Press, 2016
    [24]
    Baltsavias E P. Airborne Laser Scanning:Basic Relations and Formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2):199-214 http://www.sciencedirect.com/science/article/pii/S0924271699000155
    [25]
    Wehr A, Lohr U. Airborne Laser Scanning-An Introduction and Overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2):68-82 doi: 10.1111-j.1600-079X.2009.00714.x/
    [26]
    Buffington K J, Dugger B D, Thorne K M, et al. Statistical Correction of LiDAR-Derived Digital Elevation Models with Multispectral Airborne Imagery in Tidal Marshes[J]. Remote Sensing of Environment, 2016, 186:616-625 doi: 10.1016/j.rse.2016.09.020
    [27]
    Brideau M A, Sturzenegger M, Stead D, et al. Stability Analysis of the 2007 Chehalis Lake Landslide Based on Long-Range Terrestrial Photogrammetry and Airborne LiDAR Data[J]. Landslides, 2012, 9(1):75-91 doi: 10.1007/s10346-011-0286-4
    [28]
    韩娜娜, 单新建, 宋小刚.高空间分辨率数字高程模型测量技术及其在活断层研究中的应用[J].地震学报, 2017, 39(3):436-450 http://d.old.wanfangdata.com.cn/Periodical/dizhen201703013

    Han Nana, Shan Xinjian, Song Xiaogang. VHR DEM Measurement Technology and Its Application in Active Fault Research[J]. Acta Seismologica Sinica, 2017, 39(3):436-450 http://d.old.wanfangdata.com.cn/Periodical/dizhen201703013
    [29]
    van Westen C J, Castellanos E, Kuriakose S L. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment:An Overview[J]. Engineering Geology, 2008, 102(3-4):112-131 doi: 10.1016/j.enggeo.2008.03.010
    [30]
    Gesch D B. Analysis of LiDAR Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise[J]. Journal of Coastal Research, 2009, 25(6):49-58 http://www.cabdirect.org/abstracts/20103019395.html
    [31]
    刘焱雄, 郭锴, 何秀凤, 等.机载激光测深技术及其研究进展[J].武汉大学学报·信息科学版, 2017, 42(9):1185-1194 http://ch.whu.edu.cn/CN/abstract/abstract5816.shtml

    Liu Yanxiong, Guo Kai, He Xiufeng, et al. Research Progress of Airborne Laser Bathymetry Technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1185-1194 http://ch.whu.edu.cn/CN/abstract/abstract5816.shtml
    [32]
    阳凡林, 暴景阳, 胡兴树.水下地形测量[M].武汉:武汉大学出版社, 2017

    Yang Fanlin, Bao Jingyang, Hu Xingshu. Underwater Bathymetric Surveying[M]. Wuhan:Wuhan University Press, 2017
    [33]
    楼良盛, 刘思伟, 周瑜.机载InSAR系统精度分析[J].武汉大学学报·信息科学版, 2012, 37(1):63-67 http://ch.whu.edu.cn/CN/abstract/abstract101.shtml

    Lou Liangsheng, Liu Siwei, Zhou Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1):63-67 http://ch.whu.edu.cn/CN/abstract/abstract101.shtml
    [34]
    黄国满, 张继贤, 赵争, 等.机载干涉SAR测绘制图应用系统研究[J].测绘学报, 2008, 37(3):277-279 doi: 10.3321/j.issn:1001-1595.2008.03.003

    Huang Guoman, Zhang Jixian, Zhao Zheng, et al. Research on Airborne SAR Interferometry Mapping System[J]. Acta Geodaetica et Cartographica Si-nica, 2008, 37(3):277-279 doi: 10.3321/j.issn:1001-1595.2008.03.003
    [35]
    Wimmer C, Siegmund R, Schwabisch M, et al. Generation of High Precision DEMs of the Wadden Sea with Airborne Interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2234-2245 doi: 10.1109/36.868881
    [36]
    Madsen S N, Zebker H A, Martin J. Topographic Mapping Using Radar Interferometry:Processing Techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1):246-256 doi: 10.1109/36.210464
    [37]
    Zebker H A, Madsen S N, Martin J, et al. The TOPSAR Interferometric Radar Topographic Mapping Instrument[J]. IEEE Transactions on Geo-science and Remote Sensing, 1992, 30(5):933-940 doi: 10.1109/36.175328
    [38]
    Diaz-Varela R A, Zarco-Tejada P J, Angileri V, et al. Automatic Identification of Agricultural Terraces Through Object-Oriented Analysis of very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle[J]. Journal of Environmental Management, 2014, 134:117-126 doi: 10.1016/j.jenvman.2014.01.006
    [39]
    Colomina I, Molina P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing:A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92:79-97 doi: 10.1016/j.isprsjprs.2014.02.013
    [40]
    Fonstad M A, Dietrich J T, Courville B C, et al. Topographic Structure from Motion:A New Deve-lopment in Photogrammetric Measurement[J]. Earth Surface Processes and Landforms, 2012, 38(4):421-430 doi: 10.1002/esp.3366
    [41]
    Johnson K, Nissen E, Saripalli S, et al. Rapid Mapping of Ultrafine Fault Zone Topography with Structure from Motion[J]. Geosphere, 2014, 10(5):969-986 doi: 10.1130/GES01017.1
    [42]
    李德仁, 王密, 沈欣, 等.从对地观测卫星到对地观测脑[J].武汉大学学报·信息科学版, 2017, 42(2):143-149 http://ch.whu.edu.cn/CN/abstract/abstract5653.shtml

    Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):143-149 http://ch.whu.edu.cn/CN/abstract/abstract5653.shtml
    [43]
    李德仁.摄影测量与遥感学的发展展望[J].武汉大学学报·信息科学版, 2008, 33(12):1211-1215 http://ch.whu.edu.cn/CN/abstract/abstract1785.shtml

    Li Deren. Development Prospect of Photogrammetry and Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1211-1215 http://ch.whu.edu.cn/CN/abstract/abstract1785.shtml
    [44]
    唐新明, 王鸿燕, 祝小勇.资源三号卫星测绘技术与应用[J].测绘学报, 2017, 46(10):1482-1491 doi: 10.11947/j.AGCS.2017.20170251

    Tang Xinming, Wang Hongyan, Zhu Xiaoyong. Technology and Applications of Surveying and Mapping for ZY-3 Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1482-1491 doi: 10.11947/j.AGCS.2017.20170251
    [45]
    Toutin T. ASTER DEMs for Geomatic and Geo-scientific Applications:A Review[J]. International Journal of Remote Sensing, 2008, 29(7):1855-1875 doi: 10.1080/01431160701408477
    [46]
    王密, 杨博, 李德仁, 等.资源三号全国无控制整体区域网平差关键技术及应用[J].武汉大学学报·信息科学版, 2017, 42(4):427-433 http://ch.whu.edu.cn/CN/abstract/abstract5698.shtml

    Wang Mi, Yang Bo, Li Deren, et al. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4):427-433 http://ch.whu.edu.cn/CN/abstract/abstract5698.shtml
    [47]
    唐新明, 李国元.激光测高卫星的发展与展望[J].国际太空, 2017(467):13-18 http://d.old.wanfangdata.com.cn/Periodical/gjtk201711004

    Tang Xinming, Li Guoyuan. Development and Prospect of Laser Altimetry Satellite[J]. Space International, 2017(467):13-18 http://d.old.wanfangdata.com.cn/Periodical/gjtk201711004
    [48]
    Zwally H J, Schutz B, Abdalati W, et al. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land[J]. Journal of Geodynamics, 2002, 34(3-4):405-445 doi: 10.1016/S0264-3707(02)00042-X
    [49]
    董玉森, Hsing-Chung C, 张奎, 等. CryoSat-2 SARIn数据干涉处理及DEM获取[J].武汉大学学报·信息科学版, 2017, 42(6):803-809 http://ch.whu.edu.cn/CN/abstract/abstract5756.shtml

    Dong Yusen, Hsing-Chung C, Zhang Kui, et al. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6):803-809 http://ch.whu.edu.cn/CN/abstract/abstract5756.shtml
    [50]
    肖峰, 李斐, 张胜凯, 等.联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J].武汉大学学报·信息科学版, 2017, 42(10):1417-1422 http://ch.whu.edu.cn/CN/abstract/abstract5850.shtml

    Xiao Feng, Li Fei, Zhang Shengkai, et al. DEM Production for Larsemann Hills Combining CryoSat-2 and Ground-Based Elevation Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10):1417-1422 http://ch.whu.edu.cn/CN/abstract/abstract5850.shtml
    [51]
    张胜凯, 肖峰, 李斐, 等.基于CryoSat-2测高数据的南极局部地区DEM的建立与精度评定[J].武汉大学学报·信息科学版, 2015, 40(11):1434-1439 http://ch.whu.edu.cn/CN/abstract/abstract3360.shtml

    Zhang Shengkai, Xiao Feng, Li Fei, et al. DEM Development and Precision Analysis in Two Local Areas of Antarctica, Using CryoSat-2 Altimetry Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1434-1439 http://ch.whu.edu.cn/CN/abstract/abstract3360.shtml
    [52]
    李倩倩, 鲍李峰.测高重力场反演海底地形方法比较[J].海洋测绘, 2016, 36(5):1-4 doi: 10.3969/j.issn.1671-3044.2016.05.001

    Li Qianqian, Bao Lifeng. Comparative Analysis of Methods for Bathymetry Prediction from Altimeter-derived Gravity Anomalies[J]. Hydrographic Surveying and Charting, 2016, 36(5):1-4 doi: 10.3969/j.issn.1671-3044.2016.05.001
    [53]
    聂琳娟, 吴云孙, 金涛勇, 等.基于海水质量亏损引起的重力异常反演南海海底地形[J].大地测量与地球动力学, 2012, 32(1):43-46 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201201010

    Nie Linjuan, Wu Yunsun, Jin Taoyong, et al. Inversion of Submarine Topography of South China Sea by Using Gravity Anomaly Caused by Mass Deficiency[J]. Journal of Geodesy and Geodyna-mics, 2012, 32(1):43-46 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201201010
    [54]
    胡敏章, 李建成, 金涛勇, 等.联合多源数据确定中国海及周边海底地形模型[J].武汉大学学报·信息科学版, 2015, 40(9):1266-1273 http://ch.whu.edu.cn/CN/abstract/abstract3332.shtml

    Hu Minzhang, Li Jiancheng, Jin Taoyong, et al. Recovery of Bathymetry over China Sea and Its Adjacent Areas by Combination of Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1266-1273 http://ch.whu.edu.cn/CN/abstract/abstract3332.shtml
    [55]
    郑全安, 谢玲玲.卫星合成孔径雷达探测海底地形研究进展[J].海洋科学进展, 2016, 34(2):147-161 doi: 10.3969/j.issn.1671-6647.2016.02.001

    Zheng Quanan, Xie Lingling. Progress in Research of Satellite SAR Dectection of Ocean Bottom Topo-graphy[J]. Advances in Marine Science, 2016, 34(2):147-161 doi: 10.3969/j.issn.1671-6647.2016.02.001
    [56]
    Gesch D B, Verdin K L, Greenlee S K. New Land Surface Digital Elevation Model Covers the Earth[J]. Eos, Transactions American Geophysical Union, 1999, 80(6):69-70 doi: 10.1029/99EO00050
    [57]
    Danielson J, Gesch D. Global Multi-resolution Terrain Elevation Data 2010(GMTED2010)[OL]. https://doi.org/10.3133/ofr20111073, 2011
    [58]
    Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2):361 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_dcbab017f5e8e5b8ef41432c8377aabd
    [59]
    Hirt C, Claessens S, Fecher T, et al. New UltraHigh-Resolution Picture of Earth's Gravity Field[J]. Geophysical Research Letters, 2013, 40(16):4279-4283 doi: 10.1002/grl.50838
    [60]
    Jarvis A, Reuter H, Nelson A, et al. Hole-Filled SRTM for the Globe Version 4[OL]. http://srtm.csi.cgiar.org, 2008
    [61]
    NASA. SRTM Topography Update: Includes NASA Version 3.0(SRTM Plus)[OL]. https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf, 2018
    [62]
    DLR. DLR SRTM X-SAR Digital Elevation Models[OL]. https://centaurus.caf.dlr.de:8443/eoweb-ng/licenseAgreements/DLR_SRTM_Readme.pdf, 2018
    [63]
    Slater J A, Heady B, Kroenung G, et al. Global Assessment of the New ASTER Global Digital Elevation Model[J]. Photogrammetric Engineering and Remote Sensing, 2011, 77(4):335-349 doi: 10.14358/PERS.77.4.335
    [64]
    Abrams M, Bailey B, Tsu H, et al. The ASTER Global DEM[J]. Photogrammetric Engineering and Remote Sensing, 2010, 76(4):344-348 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5e6b2639bb22f5eca19d46d67a3d40bd
    [65]
    Tachikawa T, Kaku M, Iwasaki A, et al. ASTER Global Digital Elevation Model Version 2-Sum-mary of Validation Results[OL]. https://lpdaacaster.cr.usgs.gov/GDEM/Summary_GDEM2_validation_report_final.pdf, 2018
    [66]
    Takaku J, Tadono T.Quality Updates of AW3D Global DSM Generated from ALOS PRISM[C]. IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, Texas, USA, 2017
    [67]
    吴艳兰, 胡海, 胡鹏, 等.数字高程模型误差及其评价的问题综述[J].武汉大学学报·信息科学版, 2011, 36(5):568-574 http://ch.whu.edu.cn/CN/abstract/abstract533.shtml

    Wu Yanlan, Hu Hai, Hu Peng, et al. A Review on the Issues in DEM Error and DEM Quality Assessment[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):568-574 http://ch.whu.edu.cn/CN/abstract/abstract533.shtml
    [68]
    胡海, 吴艳兰, 胡鹏.数字高程模型精度标准、质量理论和科学观念讨论[J].武汉大学学报·信息科学版, 2011, 36(6):713-716 http://ch.whu.edu.cn/CN/abstract/abstract583.shtml

    Hu Hai, Wu Yanlan, Hu Peng. Discussion of DEM Standards, Quality Theory and Conceptions[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6):713-716 http://ch.whu.edu.cn/CN/abstract/abstract583.shtml
    [69]
    陈传法, 闫长青, 刘凤英, 等.一种综合考虑采样点水平和高程误差的DEM建模算法[J].武汉大学学报·信息科学版, 2018, 43(5):739-744 http://ch.whu.edu.cn/CN/abstract/abstract6048.shtml

    Chen Chuanfa, Yan Changqing, Liu Fengying, et al. A Total Error-Based Interpolation Method for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5):739-744 http://ch.whu.edu.cn/CN/abstract/abstract6048.shtml
    [70]
    陈传法, 刘凤英, 闫长青, 等. DEM建模的多面函数Huber抗差算法[J].武汉大学学报·信息科学版, 2016, 41(6):803-809 http://ch.whu.edu.cn/CN/abstract/abstract5467.shtml

    Chen Chuanfa, Liu Fengying, Yan Changqing, et al. A Huber-Derived Robust Multi-quadric Interpolation Method for DEM Construction[J]. Geoma-tics and Information Science of Wuhan University, 2016, 41(6):803-809 http://ch.whu.edu.cn/CN/abstract/abstract5467.shtml
    [71]
    徐志敏, 林志勇, 李雯静, 等基于填挖方分析的DEM精度评价模型[J].武汉大学学报·信息科学版, 2017, 42(8):1167-1171 http://ch.whu.edu.cn/CN/abstract/abstract5812.shtml

    Xu Zhimin, Lin Zhiyong, Li Wenjing, et al. DEM Accuracy Evaluation Model Based on Cut Fill Me-thod[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1167-1171 http://ch.whu.edu.cn/CN/abstract/abstract5812.shtml
    [72]
    Li P, Li Z, Muller J P, et al. A New Quality Validation of Global Digital Elevation Models Freely Available in China[J]. Survey Review, 2016, 48(351):409-420 doi: 10.1179/1752270615Y.0000000039
    [73]
    Li P, Shi C, Li Z, et al. Evaluation of ASTER GDEM Using GPS Benchmarks and SRTM in China[J]. International Journal of Remote Sensing, 2013, 34(5):1744-1771 doi: 10.1080/01431161.2012.726752
    [74]
    Li P, Shi C, Li Z H, et al. Evaluation of ASTER GDEM ver2 Using GPS Measurements and SRTM ver4.1 in China[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, Ⅰ-4:181-186 http://adsabs.harvard.edu/abs/2012ISPAn..I4..181L
    [75]
    李鹏, 李振洪, 施闯, 等.中国地区30米分辨率SRTM质量评估[J].测绘通报, 2016(9):24-28 http://www.cqvip.com/QK/93318X/201609/670145004.html

    Li Peng, Li Zhenhong, Shi Chuang, et al. Quality Evaluation of 1 Arc Second Version SRTM DEM in China[J]. Bulletin of Surveying and Mapping, 2016(9):24-28 http://www.cqvip.com/QK/93318X/201609/670145004.html
    [76]
    Hirt C, Filmer M, Featherstone W. Comparison and Validation of the Recent Freely Available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 Digital Elevation Models over Australia[J]. Australian Journal of Earth Sciences, 2010, 57(3):337-347 doi: 10.1080/08120091003677553
    [77]
    Jarvis A, Rubiano J, Nelson A, et al. Practical Use of SRTM Data in the Tropics:Comparisons with Digital Elevation Models Generated from Cartographic Data[J]. Working Document, 2004, 198:32
    [78]
    Carabajal C C, Harding D J, Boy J P, et al. Evalua-tion of the Global Multi-resolution Terrain Elevation Data 2010(GMTED2010) Using ICESat Geodetic Control[C]. International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications, Nanjing, China, 2011
    [79]
    Höhle J, Höhle M. Accuracy Assessment of Digital Elevation Models by Means of Robust Statistical Methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4):398-406 doi: 10.1016/j.isprsjprs.2009.02.003
    [80]
    Wessel B, Huber M, Wohlfart C, et al. Accuracy Assessment of the Global TanDEM-X Digital Elevation Model with GPS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:171-182 doi: 10.1016/j.isprsjprs.2018.02.017
    [81]
    Zink M, Bachmann M, Brautigam B, et al. TanDEM-X:The New Global DEM Takes Shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2):8-23 doi: 10.1109/MGRS.2014.2318895
    [82]
    Tomás R, Li Z. Earth Observations for Geohazards:Present and Future Challenges[J]. Remote Sensing, 2017, 9(3):194 doi: 10.3390/rs9030194
    [83]
    Scaioni M. Remote Sensing for Landslide Investigations:From Research into Practice[J]. Remote Sensing, 2013, 5(11):5488 doi: 10.3390/rs5115488
    [84]
    Scaioni M, Longoni L, Melillo V, et al. Remote Sensing for Landslide Investigations:An Overview of Recent Achievements and Perspectives[J]. Remote Sensing, 2014, 6(10):9600 doi: 10.3390/rs6109600
    [85]
    Pachauri R K, Allen M R, Barros V R, et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC, Geneva, Switzerland, 2014
    [86]
    Hinkel J, Jaeger C, Nicholls R J, et al. Sea-Level Rise Scenarios and Coastal Risk Management[J]. Nature Clim Change, 2015, 5(3):188-190 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223876426/
    [87]
    Cazenave A, Cozannet G L. Sea Level Rise and Its Coastal Impacts[J]. Earth's Future, 2014, 2(2):15-34 http://d.old.wanfangdata.com.cn/Periodical/zgkx-ed200004009
    [88]
    Fitz Gerald D M, Fenster M S, Argow B A, et al. Coastal Impacts due to Sea-Level Rise Morphodynamics of Holocene Salt Marshes:A Review Sketch from the Atlantic and Southern North Sea Coasts of Europe[J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1):601-647 doi: 10.1146/annurev.earth.35.031306.140139
    [89]
    Gesch D B. Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise Assessments:Mobile Bay, Alabama Case Study[J]. Journal of Coastal Research, 2013, 63:197-210 doi: 10.2112/SI63-016.1
    [90]
    尤再进.中国海岸带淹没和侵蚀重大灾害及减灾策略[J].中国科学院院刊, 2016, 31(10):1190-1196 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KYYX201610009&dbname=CJFD&dbcode=CJFQ

    You Zaijin. Coastal Inundation and Erosion Hazards Along the Coast of China and Mitigation Strategies[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1190-1196 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KYYX201610009&dbname=CJFD&dbcode=CJFQ
    [91]
    康蕾, 马丽, 刘毅.珠江三角洲地区未来海平面上升及风暴潮增水的耕地损失预测[J].地理学报, 2015, 70(9):1375-1389 http://d.old.wanfangdata.com.cn/Periodical/dlxb201509002

    Kang Lei, Ma Li, Liu Yi. Loss Evaluation of Farmland Caused by Sea Level Rise and Storm Surge in the Pearl River Delta Region Under Global Climate Change[J]. Acta Geographica Sinica, 2015, 70(9):1375-1389 http://d.old.wanfangdata.com.cn/Periodical/dlxb201509002
    [92]
    Ciro Aucelli P P, Di Paola G, Incontri P, et al. Coastal Inundation Risk Assessment due to Subsi-dence and Sea Level Rise in a Mediterranean Allu-vial Plain (Volturno Coastal Plain-Southern Italy)[J]. Estuarine, Coastal and Shelf Science, 2017, 198:597-609 doi: 10.1016/j.ecss.2016.06.017
    [93]
    Lentz E E, Thieler E R, Plant N G, et al. Evaluation of Dynamic Coastal Response to Sea-Level Rise Modifies Inundation Likelihood[J]. Nature Clim Change, 2016, 6(7):696-700 doi: 10.1038/nclimate2957
    [94]
    Gallant J C, Read A M, Dowling T I. Removal of Tree Offsets from SRTM and Other Digital Surface Models[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(1):275-280 http://adsabs.harvard.edu/abs/2012ISPAr39B4..275G
    [95]
    Moreira A, Krieger G, Hajnsek I, et al. Tandem-L:A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2):8-23 doi: 10.1109/MGRS.2015.2437353
    [96]
    Brock J C, Purkis S J. The Emerging Role of LiDAR Remote Sensing in Coastal Research and Resource Management[J]. Journal of Coastal Research, 2009, 25(6):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b25f3a495b0f193831e47410be85b2f2
    [97]
    Bristol R S, Euliss Jr N H, Booth N L, et al.Science Strategy for Core Science Systems in the US Geological Survey, 2013-2023[OL]. https://doi.org/10.3133/ofr2012093, 2012
    [98]
    李德仁, 眭海刚, 单杰.论地理国情监测的技术支撑[J].武汉大学学报·信息科学版, 2012, 37(5):505-512 http://ch.whu.edu.cn/CN/abstract/abstract190.shtml

    Li Deren, Sui Haigang, Shan Jie. Discussion on Key Technologies of Geographic National Conditions Monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):505-512 http://ch.whu.edu.cn/CN/abstract/abstract190.shtml
    [99]
    Gesch D B, Brock J C, Parrish C E, et al. Introduction:Special Issue on Advances in Topobathymetric Mapping, Models, and Applications[J]. Journal of Coastal Research, 2016, 25(6):1-3 http://d.old.wanfangdata.com.cn/Periodical/zgrmdxxb201305008
    [100]
    Thatcher C A, Brock J C, Danielson J J, et al. Creating a Coastal National Elevation Database (CoNED) for Science and Conservation Applications[J]. Journal of Coastal Research, 2016, 76:64-74 doi: 10.2112/SI76-007
    [101]
    Danielson J J, Poppenga S K, Brock J C, et al. Topobathymetric Elevation Model Development Using a New Methodology:Coastal National Elevation Database[J]. Journal of Coastal Research, 2016:75-89 doi: 10.2112/SI76-008
    [102]
    Loftis J D, Wang H V, de Young R J, et al. Using LiDAR Elevation Data to Develop a Topobathymetric Digital Elevation Model for Sub-grid Inundation Modeling at Langley Research Center[J]. Journal of Coastal Research, 2016, 76:134-148 doi: 10.2112/SI76-012
    [103]
    Parrish C E, Dijkstra J A, O'Neil-Dunne J P M, et al. Post-Sandy Benthic Habitat Mapping Using New Topobathymetric LiDAR Technology and Object-Based Image Classification[J]. Journal of Coastal Research, 2016, 76:200-208 doi: 10.2112/SI76-017
    [104]
    李德仁, 夏松, 江万寿, 等.一种地形变化检测与DEM更新的方法研究[J].武汉大学学报·信息科学版, 2006, 31(7):565-568 http://ch.whu.edu.cn/CN/abstract/abstract2499.shtml

    Li Deren, Xia Song, Jiang Wanshou, et al. Approach for Terrain Change Detection and DEM Updating[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7):565-568 http://ch.whu.edu.cn/CN/abstract/abstract2499.shtml
    [105]
    周兴华, 付延光, 许军.海洋垂直基准研究进展与展望[J].测绘学报, 2017, 46(10):1770-1777 doi: 10.11947/j.AGCS.2017.20170322

    Zhou Xinghua, Fu Yanguang, Xu Jun. Progress and Prospects in Developing Marine Vertical Datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1770-1777 doi: 10.11947/j.AGCS.2017.20170322
    [106]
    暴景阳, 许军, 于彩霞.海洋空间信息基准技术进展与发展方向[J].测绘学报, 2017, 46(10):1778-1785 doi: 10.11947/j.AGCS.2017.20170371

    Bao Jingyang, Xu Jun, Yu Caixia. Technical Progress and Development Directions of Oceanic Spatial Information Datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1778-1785 doi: 10.11947/j.AGCS.2017.20170371
  • Related Articles

    [1]LIU Jiping, CAO Yuanhui, WANG Yong, REN Fu, DU Qingyun. Evaluating the Accessibility of Medical Services in the 15 min Life Circle Using Internet Pan-Map Resources: A Case Study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2054-2063. DOI: 10.13203/j.whugis20220565
    [2]ZHAO Zhongguo, ZHANG Feng, ZHENG Jianghua. Evaluation of Landslide Susceptibility by Multiple Adaptive Regression Spline Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450. DOI: 10.13203/j.whugis20190136
    [3]WANG Yafei, YUAN Hui, CHEN Biyu, LI Qingquan, WAN Meng, WANG Jiayao, GUO Jianzhong. Measuring Place-Based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729. DOI: 10.13203/j.whugis20180015
    [4]LU Yonghua, LI Shuang. Spatial Accessibility of Indoor Emergency Shelters Based on Improved G2SFCA in Shenzhen City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1391-1398. DOI: 10.13203/j.whugis20180456
    [5]LIU Haiyan, PANG Xiaoping, WANG Yue, LI Zhongxiang. Quantitative Research for Site-selection of Antarctic Year-round Research Stations Based on Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 390-394. DOI: 10.13203/j.whugis20150260
    [6]FU Zhongliang, YANG Yuanwei, GAO Xianjun, ZHAO Xingyuan, LU Yuefeng, CHEN Shaoqin. Road Networks Matching Using Multiple Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 171-177. DOI: 10.13203/j.whugis20150112
    [7]Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142.
    [8]NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746.
    [9]FANG Zhixiang, LI Qingquan, SHAW Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095.
    [10]Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26.
  • Cited by

    Periodical cited type(28)

    1. 董威威,蒋贵国,梁小雅,钟孟君,程珍旎. 基于改进引力模型的成渝地区双城经济圈城市经济联系网络演变研究. 四川师范大学学报(自然科学版). 2025(01): 82-93 .
    2. 詹庆明,李轩,樊智宇. 利用非负矩阵分解识别县域人群活动时空特征. 测绘地理信息. 2024(02): 108-113 .
    3. 李静波,关雪峰,曾星,杨昌兰,邢巍然,吴华意. 长株潭城市群建成区时空扩展特征及驱动力分析. 武汉大学学报(信息科学版). 2024(06): 1028-1039 .
    4. 何明卫,赵庆文,李健波. 组团城市通勤流网络特征及影响因素分析——以贵阳市为例. 昆明理工大学学报(自然科学版). 2024(04): 249-260 .
    5. 胡秋实,李锐,吴华意,刘朝辉,蔡晶. 顾及城市场景变化的人口分析单元表达. 武汉大学学报(信息科学版). 2024(10): 1788-1799 .
    6. 薛山,廖一兰,李春林,胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究. 地球信息科学学报. 2023(01): 208-222 .
    7. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(01): 72-81 .
    8. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(02): 72-81 .
    9. 郭联欢,洪昕晨. 城市社会感知研究与应用进展. 中外建筑. 2023(06): 12-17 .
    10. 严雪心,周婕,盛富斌,牛强. 大城市近郊区产业类型对就业人口流动的差异化影响——以武汉市为例. 经济地理. 2023(10): 63-74 .
    11. 真诗泳,林钦贤,张露丹,李嘉政,林玉英,陈诚,潘自宝,胡喜生. 基于多源数据的城市内部空间交互特征:以福州市主城区为例. 科学技术与工程. 2023(35): 14937-14946 .
    12. 赵凯旭,张帅兵,黄晓军,李恩龙,武风奇. 新冠疫情管控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角. 人口与发展. 2022(01): 140-150 .
    13. 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例. 地理研究. 2022(06): 1525-1539 .
    14. 龚丽丽,蔡忠亮,李伯钊,牛彦芬,苏世亮. 街道尺度下城市居民出行特征分析. 测绘地理信息. 2022(S1): 69-73 .
    15. 段艳慧,郭伟,赵学胜,张晓莹,张冰瑞. 基于Landsat影像和统计数据的北京市人口密度制图. 北京测绘. 2022(08): 1096-1101 .
    16. 赵虎,尚铭宇,张悦,张浩楠,李鹏乾. 区域中心城市就业空间格局及优化策略研究——以山东省青岛市为例. 山东建筑大学学报. 2022(06): 61-69 .
    17. 孙艳玲,李俊蓉,张夏坤,裴新蕊,刘子菲,郭鹏. 基于昼夜人口变化的应急避难场所可达性评价——以天津市西青区为例. 安全与环境学报. 2022(06): 3342-3349 .
    18. 张爱民. 基于大数据的江西省就业收入和社会保障研究. 科技广场. 2022(05): 71-78 .
    19. 何建华,覃荣诺,丁愫,李江,岳桥兵. 基于乡村宜居性和人口流动网络特征的农村居民点重构. 武汉大学学报(信息科学版). 2021(03): 402-409 .
    20. 罗桑扎西,甄峰,张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架. 地理研究. 2021(04): 1195-1208 .
    21. 季航宇,蔡忠亮,姜莉莉,李桂娥,李伯钊. 出租车出行的空间不平等及其与人口结构的关联. 武汉大学学报(信息科学版). 2021(05): 766-776 .
    22. 刘正廉,桂志鹏,吴华意,秦昆,吴京航,梅宇翱,赵晶. 融合建筑物与POI数据的精细人口空间化研究. 测绘地理信息. 2021(05): 102-106 .
    23. 付诗航,刘耀林,方莹,杨孝军,刘艳芳,彭明军. 基于SCD的公共交通换乘时空模式——以武汉市为例. 武汉大学学报(信息科学版). 2020(07): 1089-1098 .
    24. 甘田,刘鼎. 基于手机数据的职住空间关系研究——以重庆市主城区为例. 城市交通. 2020(05): 36-44+119 .
    25. 刘艳芳,方飞国,刘耀林,罗名海. 时空大数据在空间优化中的应用. 测绘地理信息. 2019(03): 7-20 .
    26. 杨朗,周丽娜,张晓明. 基于手机信令数据的广州市职住空间特征及其发展模式探究. 城市观察. 2019(03): 87-96 .
    27. 花磊,彭宏杰,杨秀锋,刘秀芸,袁绪英,吴宜进. 基于腾讯位置大数据的长江经济带人口流动空间分析. 华中师范大学学报(自然科学版). 2019(05): 815-820 .
    28. 宋小冬,杨钰颖,钮心毅. 上海典型产业园区职工居住地、通勤距离的变化及影响机制. 城市发展研究. 2019(12): 53-61 .

    Other cited types(17)

Catalog

    Article views (3546) PDF downloads (1034) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return