XU Xiaohua, GUO Jincheng, LUO Jia. Analysis of the Global Distribution of the Atmospheric Gravity Wave Parameters Using COSMIC Radio Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1493-1498. DOI: 10.13203/j.whugis20130587
Citation: XU Xiaohua, GUO Jincheng, LUO Jia. Analysis of the Global Distribution of the Atmospheric Gravity Wave Parameters Using COSMIC Radio Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1493-1498. DOI: 10.13203/j.whugis20130587

Analysis of the Global Distribution of the Atmospheric Gravity Wave Parameters Using COSMIC Radio Occultation Data

Funds: The National Natural Science Foundation of China, No. 41374036;the National Basic Research Program of China(973 Program), No. 2013CB733302;the Open Recearch Fund of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2013-4-7-E).
More Information
  • Received Date: May 17, 2014
  • Published Date: November 04, 2015
  • This paper introduces a method to retrieve the vertical and the horizontal wavelength, the potential energy and the momentum flux of the gravity waves in the atmosphere from single temperature profiles. Using GPS RO dry temperature profiles from the COSMIC mission, we obtain the global distributions of the gravity wave parameters during the summer and winter of 2007 to 2008, regarded as the characteristics of the mesoscale atomosphere gravity wave activities. Our results show that the distribution form of the gravity wave is in good agreement with those found in the latest references. Our study shows that at the altitudes of 20~30 km, the atmospheric gravity wave activities are apparently stronger in NH winters than in NH summers. Gravity wave activities have zonal distribution characteristics. In the high latitudes of the hemisphere during summer, gravity wave activities have significant seasonal variations. Gravity wave activities are affected by topography and convections. The distributions of the momentum flux and potential energy derived from COSMIC RO data show similar characteristics.
  • [1]
    Fritts D C, Alexander M J. Gravity Wave Dynamics and Effects in the Middle Atmosphere[J]. Reviews of Geophysics-Richmond Virginia then Washington, 2003,41(1): 3-64
    [2]
    Wang L, Alexander M J. Global Estimates of Gravity Wave Parameters from GPS Radio Occultation Temperature Data[J]. Journal of Geophysical Research: Atmospheres, 2010,115(D21): 122-134
    [3]
    Zhang Yun, Xiong Jiangang, Wan Weixin. Analysis on the Global Morphology of Middle Atmospheric Gravity Waves[J]. Chinese Journal of Geophysics, 2011, 54(7):1 711-1 717(张云, 熊建刚, 万卫星. 中层大气重力波的全球分布特征[J]. 地球物理学报, 2011,54(7): 1 711-1 717)
    [4]
    Ern M, Preusse P, Alexander M J, et al. Absolute Values of Gravity Wave Momentum Flux Derived from Satellite Data[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D20):103-120
    [5]
    Luna D, Alexander P, de la Torre A. Evaluation of Uncertainty in Gravity Wave Potential Energy Calculations Through GPS Radio Occultation Measurements[J]. Advances in Space Research, 2013,52(5): 879-882
    [6]
    Faber A, Llamedo P, Schmidt T, et al. A New Approach to Global Gravity Wave Momentum Flux Determination from GPS Radio Occultation Data[J]. Atmospheric Measurement Techniques Discussions, 2013,6: 2 907-2 933
    [7]
    Stockwell R G, Mansinha L, Lowe R. Localization of the Complex Spectrum: The S Transform[J]. Signal Processing, IEEE Transactions on, 1996,44(4): 998-1 001
    [8]
    Horinouchi T, Tsuda T. Spatial Structures and Statistics of Atmospheric Gravity Waves Derived Using a Heuristic Vertical Cross-Section Extraction From COSMIC GPS Radio Occultation Data[J]. Journal of Geophysical Research: Atmospheres, 2009,114(D16): 110-124
    [9]
    Geller M A, Alexander M J, Love P T,et al. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models[J]. Journal of Climate, 2013,26(17):6 383-6 405
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return