XIONG Wei, ZHANG Lefei, DU Bo. The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 583-587. DOI: 10.13203/j.whugis20130442
Citation: XIONG Wei, ZHANG Lefei, DU Bo. The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 583-587. DOI: 10.13203/j.whugis20130442

The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition

Funds: The National Basic Research Program of China,Nos.2012CB719905,2011CB707105;the National Natural ScienceFoundation of China,No.61102128;China Postdoctoral Science Foundation,No.211-180788;Natural Science Foundation of Hubei
More Information
  • Author Bio:

    XIONG Wei: 国家重点基础研究发展计划资助项目(2012CB719905,2011CB707105);国家自然科学基金资助项目(61102128);中国博士后科学基金资助项目(211-180788);湖北省自然科学基金资助项目(2011CDB455)

  • Corresponding author:

    ZHANG Lefei,PhD,associate professor.

  • Received Date: August 28, 2013
  • Revised Date: May 04, 2015
  • Published Date: May 04, 2015
  • Traditional dimensionality reduction methods in face recognition are methods that reshapetensor face into a vector,which may lose the structural characteristics of the original data,leading toa relatively low identification result.We present a dimensionality reduction method———multilineardiscriminant subspace projection(MDSP)based on tensor.Our algorithm aims to use tensor to de-scribe face data directly,and project the tensor data onto the vector discriminant subspace through anew kind of projection method———tensor to vector projection(TVP).To reach this target,the algo-rithm first finds out the projection vectors(PV)that make data in the discriminant subspace get themaximum between-class scatter as well as the minimum within-class scatter.Then with the help ofPV,tensor data can be projected into the low dimensional vector data.As long as proper constraintsare given,the vector data can be the most representative feature data.The feature data is then sent tothe KNN classifier for classification.Results in experiments on databases ORL confirm the veracity ofour algorithm.
  • [1]
    Du Peijun,Wang Xiaomei,Tan Kun.Dimensionali-ty Reduction and Feature Extraction from Hyper-spectral Remote Sensing Imagery Based on ManifoldLearning[J].Geomatics and Information Scienceof Wuhan University,2011,36(2):148-152(杜培军,王小美,谭琨.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报·信息科学版,2011,36(2):148-152)[2] Wold S,Esbensen K,Geladi P.Principal Compo-nent Analysis[J].Chemometrics and IntelligentLaboratory Systems,1987,2(1):37-52[3] Sugiyama M.Local Fisher Discriminant Analysisfor Supervised Dimensionality Reduction[C].The23rd International Conference on Machine Learning,NewYork,2006[4] Lu H,Plataniotis K N,Venetsanopoulos A N.MPCA:Multilinear Principal Component Analysisof Tensor Objects[J].IEEE Transactions on Neu-ral Networks,2008,19(1):18-39[5] Tao D,Li X,Wu X,et al.General Tensor Dis-criminant Analysis and Gabor Features for Gait Rec-ognition[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2007,29(10):1 700-1 715[6] Lu H,Plataniotis K N,Venetsanopoulos A N.Un-correlated Multilinear Discriminant Analysis withRegularization and Aggregation for Tensor ObjectRecognition[J].IEEE Transactions on NeuralNetworks,2009,20(1):103-123[7] Ballani J,Grasedyck L.A Projection Method ToSolve Linear Systems in Tensor Format[J].Nu-merical Linear Algebra with Applications,2013,20(1):27-43[8] Liu J,Musialski P,Wonka P,et al.Tensor Com-pletion for Estimating Missing Values in Visual Da-ta[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2013,35(1):208-220[9] Cover T M,Hart P E.Nearest Neighbor PatternClassification[J].IEEE Transactions on Informa-tion Theory,1967,13(1):21-27[10] Samaria F,Harter A.Parameterisation of a Sto- 第40卷第5期熊 维等:一种基于多维正交判别子空间投影的人脸识别方法587chastic Model for Human Face Identification[C].Computer Vision,Sarasota,USA
  • Related Articles

    [1]YAO Yibin, RAN Qishun, ZHANG Bao. Application of Improved Heuristic Segmentation Algorithm to Step Detection of GNSS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 648-654. DOI: 10.13203/j.whugis20170322
    [2]SHEN Xin, LIU Yulin, LI Shixue, YAO Huang. An Optimization Design Method for High Temporal Resolution Remote Sensing Satellite Constellation Based on Improved PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1986-1993. DOI: 10.13203/j.whugis20180160
    [3]Zhan Weiwei, Wang Wei, Chen Nengcheng, Wang Chao. Path Planning Strategies for UAV Based on Improved A*Algorithm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 315-320.
    [4]ZHA Feng, XU Jiangning, LI Jingshu, HE Hongyang. Improvement of a Series of Fuzzy Damp Algorithms in SINS[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 705-709.
    [5]ZHAN Jianfeng, FAN Chong, LI Tao. A Forest Firespot Automatic Detection Algorithm for HJ-IRS Imagery[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1321-1324.
    [6]LUO Zhicai, LIN Xu, ZHOU Boyang. Improved Algorithm of Autocovariance Least-Squares Noise Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1164-1167.
    [7]LI Zhenhai, LUO Zhicai, WANG Haihong, LI Qiong. Visualization of Gravity Vector Field Using Improved FLIC Algorithm[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 276-279.
    [8]YIN Shuling, SHU Ning, LIU Xinhua. Classification of Remote Sensing Image Based on Adaptive GA and Improved BP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 201-204.
    [9]YAO Huanmei, HUANG Rentao, GAN Fuxing, LIU Yang. Principal Component Analysis of the Water Quality Evaluation in East Lake[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 732-735.
    [10]CHEN Jiangping, FU Zhongliang, XU Zhihong. An Improved Algorithm of Apriori[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 94-99.
  • Cited by

    Periodical cited type(3)

    1. 袁东,张健,余洋洋,张志良. 差异特征注意力引导的偏振图像高光移除. 光学技术. 2024(02): 247-256 .
    2. 陈毅夫,何敬,刘刚,毛佳琪. 融合Swin-Transformer网络模型的水体高光区域提取. 遥感信息. 2023(04): 129-136 .
    3. 乔玉晶,张思远,赵宇航. 高光弱纹理物体表面鲁棒重建方法. 光子学报. 2019(12): 172-182 .

    Other cited types(2)

Catalog

    Article views (3196) PDF downloads (1380) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return