XIONG Wei, ZHANG Lefei, DU Bo. The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 583-587. DOI: 10.13203/j.whugis20130442
Citation: XIONG Wei, ZHANG Lefei, DU Bo. The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 583-587. DOI: 10.13203/j.whugis20130442

The Second IEEE Workshop on Applications of A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition

Funds: The National Basic Research Program of China,Nos.2012CB719905,2011CB707105;the National Natural ScienceFoundation of China,No.61102128;China Postdoctoral Science Foundation,No.211-180788;Natural Science Foundation of Hubei
More Information
  • Author Bio:

    XIONG Wei: 国家重点基础研究发展计划资助项目(2012CB719905,2011CB707105);国家自然科学基金资助项目(61102128);中国博士后科学基金资助项目(211-180788);湖北省自然科学基金资助项目(2011CDB455)

  • Corresponding author:

    ZHANG Lefei,PhD,associate professor.

  • Received Date: August 28, 2013
  • Revised Date: May 04, 2015
  • Published Date: May 04, 2015
  • Traditional dimensionality reduction methods in face recognition are methods that reshapetensor face into a vector,which may lose the structural characteristics of the original data,leading toa relatively low identification result.We present a dimensionality reduction method———multilineardiscriminant subspace projection(MDSP)based on tensor.Our algorithm aims to use tensor to de-scribe face data directly,and project the tensor data onto the vector discriminant subspace through anew kind of projection method———tensor to vector projection(TVP).To reach this target,the algo-rithm first finds out the projection vectors(PV)that make data in the discriminant subspace get themaximum between-class scatter as well as the minimum within-class scatter.Then with the help ofPV,tensor data can be projected into the low dimensional vector data.As long as proper constraintsare given,the vector data can be the most representative feature data.The feature data is then sent tothe KNN classifier for classification.Results in experiments on databases ORL confirm the veracity ofour algorithm.
  • [1]
    Du Peijun,Wang Xiaomei,Tan Kun.Dimensionali-ty Reduction and Feature Extraction from Hyper-spectral Remote Sensing Imagery Based on ManifoldLearning[J].Geomatics and Information Scienceof Wuhan University,2011,36(2):148-152(杜培军,王小美,谭琨.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报·信息科学版,2011,36(2):148-152)[2] Wold S,Esbensen K,Geladi P.Principal Compo-nent Analysis[J].Chemometrics and IntelligentLaboratory Systems,1987,2(1):37-52[3] Sugiyama M.Local Fisher Discriminant Analysisfor Supervised Dimensionality Reduction[C].The23rd International Conference on Machine Learning,NewYork,2006[4] Lu H,Plataniotis K N,Venetsanopoulos A N.MPCA:Multilinear Principal Component Analysisof Tensor Objects[J].IEEE Transactions on Neu-ral Networks,2008,19(1):18-39[5] Tao D,Li X,Wu X,et al.General Tensor Dis-criminant Analysis and Gabor Features for Gait Rec-ognition[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2007,29(10):1 700-1 715[6] Lu H,Plataniotis K N,Venetsanopoulos A N.Un-correlated Multilinear Discriminant Analysis withRegularization and Aggregation for Tensor ObjectRecognition[J].IEEE Transactions on NeuralNetworks,2009,20(1):103-123[7] Ballani J,Grasedyck L.A Projection Method ToSolve Linear Systems in Tensor Format[J].Nu-merical Linear Algebra with Applications,2013,20(1):27-43[8] Liu J,Musialski P,Wonka P,et al.Tensor Com-pletion for Estimating Missing Values in Visual Da-ta[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2013,35(1):208-220[9] Cover T M,Hart P E.Nearest Neighbor PatternClassification[J].IEEE Transactions on Informa-tion Theory,1967,13(1):21-27[10] Samaria F,Harter A.Parameterisation of a Sto- 第40卷第5期熊 维等:一种基于多维正交判别子空间投影的人脸识别方法587chastic Model for Human Face Identification[C].Computer Vision,Sarasota,USA
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (3195) PDF downloads (1380) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return