TIAN Jing, XIONG Fuquan, CHENG Xueping, WANG Rui, FANG Huaqiang. Road Density Partition and Its Application in Evaluation of Road Selection[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1225-1231. DOI: 10.13203/j.whugis20130430
Citation: TIAN Jing, XIONG Fuquan, CHENG Xueping, WANG Rui, FANG Huaqiang. Road Density Partition and Its Application in Evaluation of Road Selection[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1225-1231. DOI: 10.13203/j.whugis20130430

Road Density Partition and Its Application in Evaluation of Road Selection

Funds: 

National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China J1103409

More Information
  • Author Bio:

    TIAN Jing, PhD, specializes in automated map generalization and spatial data mining. E-mail: yutaka-2010@163.com

  • Received Date: August 13, 2014
  • Published Date: September 04, 2016
  • Road density is a useful index widely applied in the analysis of ecological effects, road network planning, delimitation of urban areas and road network generalization. Extraction of dense and sparse areas of the road network is a key issue in the filed of automated map generalization. This paper proposes a method for road density partition. The method creates the Voronoi diagram of road intersections and endpoints, and then uses Gi* to identify statistically significant spatial clusters of high values and low values for the area of a Voronoi cell. Finally, the method aggregates neighboring Voronoi cells from the statistically significant spatial clusters of high values and low values at a 95% confidence level. The road network of Hong Kong at the 14, 13 and 12 levels of Google Map are used as experimental data for evaluation of road network selection. Experimental results showed that the road density partitions using the proposed method generally reflected the density of the road network, while the road density contrasted well before and after road selection. Our method is superior to the grid density approach.
  • [1]
    Lüscher P, Weibel R. Exploiting Empirical Knowledge for Automatic Delineation of City Centres from Large-scale Topographic Databases [J]. Computers, Environment and Urban Systems, 2013, 37(1): 18-34 http://cn.bing.com/academic/profile?id=2078917018&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Chaudhry O, Mackaness W A. Automatic Identification of Urban Settlement Boundaries for Multiple Representation Databases [J]. Computers, Environment and Urban Systems, 2008, 32(2): 95-109 doi: 10.1016/j.compenvurbsys.2007.09.001
    [3]
    Chaudhry O Z, Mackaness W A. Creating Mountains Out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis [J]. Transactions in GIS, 2008, 12(5): 567-589 doi: 10.1111/j.1467-9671.2008.01116.x
    [4]
    Steiniger S, Lange T, Burghardt D, et al. An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques [J]. Transactions in GIS, 2008, 12(1): 31-59 doi: 10.1111/tgis.2008.12.issue-1
    [5]
    Heinzle F, Anders K H. Characterising. Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks [M]// Mackaness W A, Ruas A, Sarjakoski L T. Generalisation of Geographic Information: Cartographic Modelling and Applications. New York: Elsevier, 2007
    [6]
    Hawbaker T J, Radeloff V C, Hammer R B, et al. Road Density And Landscape Pattern in Relation to Hhousing Density, Land Ownership, Land Cover and Soils [J]. Landscape Ecology, 2004, 20(5): 609-625
    [7]
    Cai X, Wu Z, Cheng J. Using Kernel Density Estimation to Assess the Spatial Pattern of Road Density and Its Impact on Landscape Fragmentation [J]. International Journal of Geographical Information Science, 2013, 27(2): 222-230 doi: 10.1080/13658816.2012.663918
    [8]
    刘锐, 胡伟平, 王红亮, 等.基于核密度估计的广佛都市区路网演变分析[J].地理科学, 2011, 31(1): 81-86 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201101013.htm

    Liu Rui, Hu Weiping, Wang Hongliang, et al. The Road Network Evolution of Guangzhou-Foshan Metropolitan Area Based on Kernal Density Estimation[J].Scientia Geographica Sinic, 2011, 31(1):81-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201101013.htm
    [9]
    杨东援, 吴海燕, 宗传苓.采用分形几何学方法概述路网覆盖形态[J].中国公路学报, 1996, 9(3): 29-35 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL603.004.htm

    Yang Dongyuan, Wu Haiyan, Zong Chuanling. Fractal Algorithm and Its Application to Highway Network Covering Charactors[J].China Journal of Highway and Transport, 1996, 9(3):29-35 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL603.004.htm
    [10]
    Borruso G. Network Density and Delimitation of Urban Areas [J]. Transactions in GIS, 2003, 7(2): 177-191 doi: 10.1111/tgis.2003.7.issue-2
    [11]
    Liu Xingjian, Ai Tinghua, Liu Yaolin. Road Density Analysis Based on Skeleton Partitioning for Road Generalization [J]. Geo-spatial Information Science, 2009, 12(2): 110-116 doi: 10.1007/s11806-009-0012-8
    [12]
    Liu Xingjian, Zhan F, Ai Tinghua. Road Selection Based on Voronoi Diagrams and "strokes" in Map Generalization [J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12: 194-202 doi: 10.1016/j.jag.2009.10.009
    [13]
    Chen Jun, Hu Yungang, Li Zhilin, et al. Selective Omission of Road Features Based on Mesh Density for Automatic Map Generalization [J]. International Journal of Geographical Information Science, 2009, 23(8): 1 034-1 032 http://cn.bing.com/academic/profile?id=1995749047&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    陈军, 胡云岗, 赵仁亮, 等.道路数据缩编更新的自动综合方法研究[J].武汉大学学报·信息科学版, 2007, 32(11):1 022-1 027 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200711019.htm

    Cheng Jun, Hu Yungang, Zhao Renliang, et al. Road Data Updating Base on Map Generalization[J].Geomatics and Information Science of Wuhan University, 2007, 32(11):1 022-1 027 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200711019.htm
    [15]
    王家耀.普通地图制图综合原理[M].北京:测绘出版社, 1993

    Wang Jiayao. Principles of Cartographic Generalization [M]. Beijing: Surveying and Mapping Press, 1993
    [16]
    Li Zhilin, Zhou Qi. Integration of Linear and Areal Hierarchies for Continuous Multi-scale Representation of Road Networks [J]. International Journal of Geographical Information Science, 2012, 26(5): 855-880 doi: 10.1080/13658816.2011.616861
    [17]
    Getis A, Ord K. The Analysis of Spatial Association by Use of Distance Statistics [J]. Geographical Analysis, 1992, 24(3): 189-206 http://cn.bing.com/academic/profile?id=2131586477&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Ord K, Getis A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application [J]. Geographical Analysis, 1995, 27(4): 286-306 http://cn.bing.com/academic/profile?id=1967137980&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    ESRI. ArcGIS Desktop 10.0 Help [EB/OL]. http://www.esri.com, 2015
    [20]
    Jiang Bin, Jia Tao. Zipf's Law for All the Natural Cities in the United States: a Geospatial Perspective [J]. International Journal of Geographical Information Science, 2011, 25(8): 1 269-1 281 http://cn.bing.com/academic/profile?id=2021257428&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Yan Haowen, Weibel R. An Algorithm for Point Cluster Generalization Based on the Voronoi Diagram [J]. Computers & Geosciences, 2008, 34(8): 939-954 http://cn.bing.com/academic/profile?id=2036267401&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Jiang Bin, Liu Xintao. Scaling of Geographic Space from the Perspective of City and Field Blocks and Using Volunteered Geographic Information [J]. International Journal of Geographical Information Science, 2012, 26(2): 215-229 doi: 10.1080/13658816.2011.575074
    [23]
    Truong L T, Somenahalli S V C. Using GIS to Identify Pedestrian-Vehicle Crash Hot Spots and Unsafe Bus Stops [J]. Journal of Public Transportation, 2011, 14(1): 99-114 doi: 10.5038/2375-0901
  • Related Articles

    [1]HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454
    [2]Luo Xiaomin, Cai Changsheng, Zhu Jianjun, Pan Lin, Li Shijia. Accuracy Assessment of Single Point Positioning Based on Observational Data from Galileo IOV Satellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 199-203.
    [3]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [4]XU Changhui, GAO Jingxiang, ZHOU Feng, WANG Jian. Reliability Analysis of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 709-713.
    [5]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [6]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [7]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
    [8]LIU Zhimin, LIU Jingnan, LIU Hui. GPS Single-point Positioning Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 35-38.
    [9]LIU Jingnan, YE Shirong. GPS Precise Point Positioning Using Undifferenced Phase Observation[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 234-240.
    [10]Kuang Shanlong. Study of Outlier Detection and Position Estimation for Point Positioning in Marine Surveying[J]. Geomatics and Information Science of Wuhan University, 1987, 12(4): 85-97.
  • Cited by

    Periodical cited type(3)

    1. 王利,李一,舒宝,田云青,王冰洁. 三种典型低轨增强星座与北斗系统联合应用的RAIM性能分析. 武汉大学学报(信息科学版). 2023(05): 678-686 .
    2. 吴有龙,陈帅,徐楠,殷婷婷. 城市环境下惯性辅助的GNSS多粗差探测方法. 大地测量与地球动力学. 2023(12): 1269-1274 .
    3. 边少锋,刘一,纪兵,周威. 北斗三号卫星观测信息高度角相关随机模型统计特性分析. 武汉大学学报(信息科学版). 2022(10): 1615-1624 .

    Other cited types(4)

Catalog

    Article views (1541) PDF downloads (371) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return