LI Jian, WANG Zongmin, MA Yurong, TIAN Zhihui. Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035
Citation: LI Jian, WANG Zongmin, MA Yurong, TIAN Zhihui. Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1114-1120. DOI: 10.13203/j.whugis20130035

Automatic and Accurate Mosaicking of Point Clouds fromMulti-station Laser Scanning

Funds: Science and Technology Key Project of the Education Department Henan Province,No.4A420002.
More Information
  • Author Bio:

    LI Jian,PhD,lecturer,specializes in LiDAR data processing and 3Dreconstruction.

  • Received Date: April 10, 2014
  • Revised Date: September 04, 2014
  • Published Date: September 04, 2014
  • Objective The mosaicking of point clouds is a key step in point cloud processing.We propose a pointcloud mosaicking technology for multi-station laser scanning based on 2Dimage matching and 3Dcor-responding feature point refinement to solve the problems in existing point cloud mosaicking method-ologies for multi-station laser scanning,such as low efficiency,poor accuracy,and low automation.Firstly,the 2Dimages are generated from the derivative information from laser scanning data using in-terpolation algorithms.Secondly,2Dcorresponding feature points are obtained using GPU accelera-tion SIFT image matching,eliminating gross errors.Finally,3Dcorresponding feature points are ac-quired using an inversion algorithm;identifying whether they are same corresponding feature points inthe 3Dpoint cloud.Experiments demonstrate the feasibility and effectiveness of the proposed method.
  • [1]
    McKay N,Besl P.A Method for Registration for 3-D Shapes[J].IEEE Transactions on Pattern Anal-ysis and Machine Intelligence,1992,14(2):239-256[2] Zhang Zhengyou.Iterative Point Matching for Reg-istration of Free-Form Curves and Surfaces[J].In-ternational Journal of Computer Vision,1994,13(2):119-164[3] Medioni G,Chen Y.Object Modeling by Registra-tion of Multiple Range Images[J].Image and Vi-sion Computing,1992,10(3):156-168[4] Yang Xianhui,Wang Huinan.Application Researchof ICP Algorithm in 3DPoint Cloud Alignment[J].Computer Simulation,2010,27(8):235-238(杨现辉,王惠南.ICP算法在3D点云配准中的应用研究[J].计算机仿真,2010,27(8):235-238)[5] Chen Y,Medioni G.Object Modelling by Registra-tion of Multiple Range Images[J].Image and Vi-sion Computing,1992,10(3):145-155[6] Park S Y,Subbarao M.A Fast Point-to-TangentPlane Technique for Multi-view Registration[C].The Fourth International Conference on 3-D DigitalImaging and Modeling,Banff,Alberta,Canada,2003[7] Johnson A E,Hebert M.Surface Matching for Ob-ject Recognition in Complex Three-dimensionalScenes[J].Image and Vision Computing,1998,16(9/10):635-651[8] Murino V,Ronchetti L,Castellani U.Reconstruc-tion of Complex Environments by Robust Pre-a-ligned ICP[C].3-D Digital Imaging and Modeling,Quebec City,Que,2001[9] Lucchese L,Doretto G,Cortelazzo G M.A Fre-quency Domain Technique for Range Data Registra-tion[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2002,24(11):1468-1484[10]Sablatnig R,Kampel M.Model-Based Registrationof Front-and Backviews of Rotationally SymmetricObjects[J].Computer Vision and Image Under-standing,2002,87(1-3):90-103[11]Stamos L M.Automated Feature-Based Range Reg-istration of Urban Scenes of Large Scale[C].TheIEEE Computer Society Conference on ComputerVision and Pattern Recognition,Madison,2003[12]Johnson A E,Hebert M.Surface Matching for Ob-ject Recognition in Complex Three-DimensionalScenes[J].Image and Vision Computing,1998,16(9/10):635-651[13]Zheng Dehua,Yue Dongjie,Yue Jianping.Geomet-ric Feature Constraint Based Algorithm for BuildingScanning Point Cloud Registration[J].Acta Geo-daetica et Cartographica Sinca,2008,37(4):464-468(郑德华,岳东杰,岳建平.基于几何特征约束的建筑物点云配准算法[J].测绘学报,2008,37(4):464-468)[14]Sheng Min.Researeh on the Methods of NonlinearInterpolation for Digital Image Proeessing[D].Hefei:Hefei University of Technology,2009(盛敏.数字图像处理中非线性插值方法的应用研究[D].合肥:合肥工业大学,2009)[15]Kim J,Park E,Cuiet al X.A Fast Feature Extrac-tion in Object Recognition Using Parallel Processingon CPU and GPU[C].Systems,Man and Cyber-1119武 汉 大 学 学 报 · 信 息 科 学 版2014年9月netics,San Antonio,TX,2009[16]Bjorke K.Image Processing on Parallel GPU PixelUnits[C].The 2nd International Conference on Ad-vanced Computer Control,Shenyang,2010[17]Anderson K,Wang Y,Camargo A.Real-Time Un-manned Aircraft Systems Surveillance Video Mosa-icking Using GPUs[C].The International Societyfor Optical Engineering,Orlando,Florida,2010[18]Flannery F,Toal D,Horgan J.Towards Real TimeVision Based UUV Navigation Using GPU Technol-ogy[C].Oceans 2009-Europe,Bremen,2009[19]Chen Meijuan,Chen Yumin.The Improved MovingLeast-Square Approximation[J].Chinese Quarterlyof Mechanics,2003,24(2):266-272(陈美娟,程玉民.改进的移动最小二乘法[J].力学季刊,2003,24(2):266-272)
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (1803) PDF downloads (1367) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return