LIU Wenchao, BIAN Hongwei, WANG Rongying, WEN Chaojiang. Navigation Performance of SINS Transverse Coordinate Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1520-1525. DOI: 10.13203/j.whugis20130032
Citation: LIU Wenchao, BIAN Hongwei, WANG Rongying, WEN Chaojiang. Navigation Performance of SINS Transverse Coordinate Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1520-1525. DOI: 10.13203/j.whugis20130032

Navigation Performance of SINS Transverse Coordinate Method

Funds: The National Natural Science Foundation of China, Nos. 41406212, 41201478;the Aerospace Science Foundation of China, No. 20120816001.
More Information
  • Received Date: September 03, 2014
  • Published Date: November 04, 2015
  • The system error equations in the SINS transverse coordinate method are deduced for the transverse coordinate system. According to the solutions from the static base system error equations, the impact of system initial errors and inertial measuring unit errors on the transverse coordinate method is analyzed. System errors are simulated, and compared with system errors from the geographic coordinate computation method. Theoretical analysis and simulation results show transverse velocity errors and horizontal attitude errors are a type of periodic oscillation;position errors, azimuth error angle, wander azimuth error and heading errors increase with time. The transverse coordinate method can solve the problems arising when system errors increase and calculations output singular values in the geographic latitude and longitude coordinate calculating method.
  • [1]
    Ye Ziyang.The Projections & Navigation Grid in Polar Navigation Chars[J].Navigation,1999(4):113-116(叶子扬.极区航空图投影及领航网格[J].导航,1999(4):113-116)
    [2]
    Barth D,Suzanna C.Evaluation of Tropospheric and Ionospheric Effects on Arctic Navigation Conditions[C].The 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2009,Savannah,2009
    [3]
    McEwen R, Thomas H, Weber D, et al. Performance of an AUV Navigation System at Arctic Latitudes[J]. IEEE Journal of Oceanic Engineering, 2005, 30(2): 443-454
    [4]
    Tazartes D A.From Gimbaled Platforms to Strapdwon Sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):2 292-2 299
    [5]
    Guo Deyin,Qu Shaobin,Jiang Lu, et al. A Practical Method of Locating at High Latitudes[J].Marine Technology,1999(4):16-19(郭德印,曲绍斌,姜璐,等.在高纬度地区确定船位的实用方法[J].航海技术,1999(4):16-19)
    [6]
    Paul G S.Strapdown Analysis[M].Minnesota:Strapdown Associats,2000
    [7]
    Dyer G C.Polar Navigation——A New Transverse Mercator Technique[J].The Journal of Navigation,1971,24(4):484-495
    [8]
    Watland D R. Orthogonal Polar Coordinate System to Accommodate Polar Navigation[P]. United States Patent,5448486, Minneapolis, MN, 1995
    [9]
    Su Zhong, Li Qing, Li Kuangzhen, et al. Inertial Technique[M]. Beijing: National Defence Industrial Press, 2010(苏中,李擎,李旷振,等.惯性技术[M].北京:国防工业出版社,2010)
  • Related Articles

    [1]HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228
    [2]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [3]WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
    [4]ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312
    [5]GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006
    [6]QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833.
    [7]QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281.
    [8]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [9]JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32.
    [10]YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184.
  • Cited by

    Periodical cited type(12)

    1. 黄海,迪玉茹,吝龙艳,阮卫. 水下航行器极区内航行控制关键技术. 自动化与仪器仪表. 2022(02): 6-10 .
    2. 文者,卞鸿巍,马恒,臧涛. 中低纬度下惯导极区性能模拟测试方法. 系统工程与电子技术. 2021(09): 2620-2627 .
    3. 李利萍,秦建. 车载惯导校准装置仿真测试系统的设计与研究. 数码世界. 2020(02): 31 .
    4. 林秀秀,卞鸿巍,马恒,王荣颖. 极区惯导编排中地球近似模型的适用性分析. 测绘学报. 2019(03): 303-312 .
    5. 林秀秀,卞鸿巍,王荣颖,马恒. 一种极区统一坐标系及其导航参数转换方法. 火力与指挥控制. 2019(11): 137-142 .
    6. 王海波,张汉武,郝勇帅. 横轴墨卡托海图的船舶极区航行方法. 测绘科学. 2018(05): 149-154 .
    7. 张仁均,陈诚,田琦. 基于MK60的室内导航控制系统设计. 科技与创新. 2018(07): 119-121 .
    8. 覃方君,常路宾,佟林,王智,黄春福,查峰. 基于虚拟圆球模型的横向极区导航方法(英文). 中国惯性技术学报. 2018(05): 571-578 .
    9. 卞鸿巍,林秀秀,王荣颖,马恒. 基于统一横向坐标系的极区地球椭球模型导航方法. 中国惯性技术学报. 2018(05): 579-584 .
    10. 周爱军,郝勇帅,张汉武,王海波,张萍萍. 基于横向地球坐标的惯性导航系统研究. 江苏科技大学学报(自然科学版). 2017(03): 350-355 .
    11. 郝勇帅,周爱军,王海波. 地球模型对横坐标惯导极区导航影响的分析. 舰船电子工程. 2017(07): 37-40 .
    12. 王海波,张汉武,张萍萍,王军,郝勇帅. 基于横向地球坐标的惯性导航方法. 中国惯性技术学报. 2016(06): 716-722 .

    Other cited types(6)

Catalog

    Article views (1215) PDF downloads (408) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return