YAO Zhihong, YANG Qinke, WU Yanli, LI Rui. Spatial-Temporal Dynamic Features in Soil Erosion of theGushanchuan Basin in the Past Three Decades[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 974-980. DOI: 10.13203/j.whugis20120118
Citation: YAO Zhihong, YANG Qinke, WU Yanli, LI Rui. Spatial-Temporal Dynamic Features in Soil Erosion of theGushanchuan Basin in the Past Three Decades[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 974-980. DOI: 10.13203/j.whugis20120118

Spatial-Temporal Dynamic Features in Soil Erosion of theGushanchuan Basin in the Past Three Decades

Funds: The National Natural Science Foundation of China,No.41071188;the Special Funds for Scientific Research on Pub-lic Causes of Ministry of Water Resources:Application Research and Coupling Technology of Multi-scale Spatial Soil Erosion Model,No.201201081-02;the High-Level Talents Initial Science Foundation Sponsored by North China University of Water Resources and ElectricPower,No.201244.
More Information
  • Author Bio:

    YAO Zhihong,PhD,specializes in water conservation and applications of GIS.

  • Corresponding author:

    YANG Qinke

  • Received Date: March 24, 2013
  • Revised Date: August 04, 2014
  • Published Date: August 04, 2014
  • Objective The Gushanchuan basin was chosen as a study area which is prone to serious soil erosion inthe Loess Plateau to investigate the requirements of soil and water conservation benefit assessment andsoil loss control.We quantitatively studied the spatial-temporal dynamic features of the soil erosion ofthe area over the past three decades by applying soil science,remote sensing(RS)and geographic in-formation systems(GIS).We obtained three main results.Firstly,variations of the soil erosion in thestudy area in the past three decades(1975to 2006)were divided into two stages.The first stage wasbetween 1975and 1986,when soil erosion intensified and eroded area increased by 138.13km2,par-ticularly in the southeast part of the basin.The second stage was between 1986and 2006,when soil e-rosion weakened.The eroded area decreased by 163.09km2,and soil erosion decreased in the entirebasin,particularly in the east.Secondly,soil erosion above the medium degree mainly occurred in theelevation ranging from 1 070mto 1 300m,with the slope ranging from 18°to 35°correspondingly.The precipitation in 1975and 2006was scanty,and the erosion above the medium degree have a rain-fall erosivity ranging from 900MJ·mm·hm-2·h-1 to 1 150MJ·mm·hm-2·h-1.The erosion a-bove the medium degree in 1986and 1997have a rainfall erosivity ranging from 1 300MJ·mm·hm-2·h-1 and 1 800MJ·mm·hm-2·h-1.The area with serious soil erosion corresponded to the areadistributed with high rainfall erosivity.Thirdly,the soil erosion in the basin predominantly occurredin farmlands and woodlands.During the period between 1975and 2006,the farmland area decreased,and the woodland and pasture areas increased,and the soil erosion weakened as a whole.The develop-ment of the land use of the basin was in a positive way,and soil erosion showed an obvious weakeningtrend.These results would provide references for understanding soil erosion and macro decision -making for controlling soil erosion in the first Loess Hill and Gully area sub-region.
  • [1]
    Xu Jianhua,Li Xuemei,Zhang Peide,et al.Delimi-tation of Coarse Sediment and Study on Overlap ofCoarse Sediment and Sediment Abundant Areas inthe Middle Yellow River Basin[J].Journal of Sed-iment Research,1998,4:36-46(徐建华,李雪梅,张培德,等.黄河粗泥沙界限与中游多沙粗沙区区域研究[J].泥沙研究,1998,4:36-46)[2] Liu Jiahong,Wang Guangqian,Li Tiejian,et al.Calculation of Soil Erosion in Coarse Sandy RegionBased on the Digital Watershed Model[J].Sciencein China(Series E),2007,37(3):446-454(刘家宏,王光谦,李铁键,等.基于数字流域模型的多沙粗沙区侵蚀产沙计算[J].中国科学:E辑,2007,37(3):446-454)[3] Nusser S M,Kienzler J M,Fuller W A.Geostatis-tieal Estimation Data for the 1997 National Re-sources Inventory[M]. Washington DC:USDANatural Resources Conservation Sevice,1999[4] Lu Hua,Gallant J,Prosser I P,et al.Prediction ofSheet and Rill Erosion over the Australian Conti-nent,Incorporating Monthly Soil Loss Distribution[M].Canberra:CSIRO Land and Water TechnicalReport,2001[5] Le B Y,Montier C,Jamagne M,et al.Mapping E-rosion Risk for Cultivated Soil in France[J].Cate-na,2002,46(2-3):207-220[6] Kirkby M A R,McMahon M D,Shao J,et al.Medalus Soil Erosion Models for Global Change[J].Geomorphology,1998,24(1):35-49[7] De J S M,Paracchini M L,Bertolo F,et al.Re-gional Assessment of Soil Erosion Using the Dis-tributed Model Semmed and Remotely Sensed Data[J].Catena,1999,37(34):291-308[8] Liu B Y,Zhang K L,Xie Y.An Empirical SoilLoss Equation[C].The 12th ISCO,Beijing,2002[9] Jiang Zhongshan,Zheng Fenli,Wu Min.PredictionModel of Water Erosion on Hillslopes[J].Journalof Sediment Research,2005,4:1-6(江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究,2005,4:1-6)[10]Jiang Zhongshan,Zheng Fenli.Prediction Model ofWater Erosion on Hillslopes[J].Journal of Soiland Water Conservation,2004,18(1):66-69(江忠善,郑粉莉.坡面水蚀预报模型研究[J].水土保持学报,2004,18(1):66-69)[11]Ministry of Water Resources of People’s Republicof China.Gradation and Classification Standard ofSoil Erosion(SL 190-2007)[S].Beijing:China WaterPower Press,2007(中华人民共和国水利部.土壤侵蚀分类分级标准(SL 190-2007)[S].北京:中国水利水电出版社,2007)[12]Yu B,Rosewell C J.A Robust Estimator of the R-factor for Universal Soil Loss Equation[J].Trans-actions of the SAAE,1996,39(2):559-561[13]Williams J R,Jones C A,Dyke P T.The EPIC-model and Its Application[C].ICRISAT-IBSS-NAT-SYSS Symp,Hyderabad,India,1984[14]Van R D,Maichle R W,Hickey R J.Computingthe LS Factor for the Revised Universal Soil LossEquation Through Array-based Slope Processing ofDigital Elevation Data Using a C++Executable[J].Computers & Geosciences,2004,30(9-10):1 043-1 053[15]Liu B Y,Nearing M A,Risse L M.Slope GradientEffects on Soil Loss for Steep Slopes[J].Transac-tions of the SAAE,1994,37(6):1835-1840[16]Liu B Y,Nearing M A,Shi P J,et al.SlopeLength Effects on Soil Loss for Steep Slopes[J].Soil Society of American Journal,2000,64:1759-1763[17]Zhang Hongming,Yang Qinke,Liu Qingrui,et al.Regional Slope Length and Slope Steepness FactorExtraction Algorithm Based on GIS[J].ComputerEngineering,2010,36(9):246-248(张宏鸣,杨勤科,刘晴蕊,等.基于GIS的区域LS因子算法及实现[J].计算机工程,2010,36(9):246-248)[18]Wittich K L,Hansing O.Area Averaged Vegeta-tive Cover Fraction Estimated from Satellite Data[J].International Journal of Biometeorology,1995,38:209-215[19]Wischmeier W H,Smith D D.Predicting RainfallEosion Losses from Cropland East of the RockyMountains:A Guide for Soil and Water Conserva-tion Planning[R].Washington DC:USDA Agricul-ture Handbook,1978[20]Zhang Y,Liu B Y,Zhang Q C,et al.Effect of Dif-ferent Vegetation Types on Soil Erosion by Water[J].Acta Botanica Sinica,2003,45(10):1204-1209[21]Xie Hongxia,Li Rui,Yang Qinke,et al.Effect ofReturning Farmland to Forest(Pasture)and Chan-ges of Precipitation on Soil Erosion in the Yanhe Ba-sin[J].Scientia Agricultura Sinica,2009,42(2):569-576(谢红霞,李锐,杨勤科,等.退耕还林(草)和降雨变化对延河流域土壤侵蚀影响[J].中国农业科学,2009,42(2):569-576)[22]Liu Baoyuan.Report of the Development of Predic-ting Model of Soil Erosion in Loess Plateau ofNorth-Western China[R].Beijing:Monitoring Cen-979武 汉 大 学 学 报 · 信 息 科 学 版2014年8月ter of Soil and Water Conservation of Water Re-source Ministry,2006(刘宝元.西北黄土高原区土壤侵蚀预报模型开发项目研究成果报告[R].北京:水利部水土保持监测中心,2006
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return