FANG Nan, SUN Kai, HUANG Chuanchao, BAI Chengyuan, CHEN Zhidan, XIE Lei, YANG Zhi, XU Yinghui, XIE Hongbin, FENG Guangcai, LI Zhiwei, XU Wenbin. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036
Citation: FANG Nan, SUN Kai, HUANG Chuanchao, BAI Chengyuan, CHEN Zhidan, XIE Lei, YANG Zhi, XU Yinghui, XIE Hongbin, FENG Guangcai, LI Zhiwei, XU Wenbin. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 333-343. DOI: 10.13203/j.whugis20240036

Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake

More Information
  • Received Date: January 28, 2024
  • Available Online: March 25, 2024
  • Objectives 

    On December 18, 2023, an Ms 6.2 earthquake occurred in Jishishan County, Gansu Province, China. This event occurred on the Lajishan fault, a secondary fault with low activity and infrequent seismicity in the Qilian Mountains, which event provides an opportunity to study this special structure within the Qilian Mountains.

    Methods 

    We derived the coseismic deformation field using both ascen⁃ding and descending Sentinel-1A data, applied the Bayesian inversion method to determine the source parameters of the seismogenic fault, and combined seismic wave records with interferometric synthetic aperture radar data to model the dynamic slip distribution of this event.

    Results 

    The event has a northwest-dipping fault with a dip of 32.2°,a strike of 325.2° and a rake of 112°,indicating that this earthquake is a thrust event with a dextral slip component.

    Conclusions 

    By analyzing the fault geometry and kinematic characteristics of the primary active faults in the surrounding region, we found that the Jishishan earthquake occurred on the southern edge of the Laji Mountain. This study concludes that the Jishishan earthquake occurred on a northeast-dipping fault at the southern margin of the Laji Mountains. It also suggests that the eastern section of the Laji Mountain fault, where the Jishishan earthquake occurred, may be a step-over structure between the Qinghai Nanshan fault, the western section of the Laji Mountain fault, and the west Qinling fault. Additionally, it proposes that the left-running, right-step-type extrusion of the step-over zone is the driving mechanism of this retrograde seismic event.

  • [1]
    王运生, 赵波, 吉锋, 等. 2023年甘肃积石山Ms 6.2地震震害异常的启示[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 1-8.

    WANG Yunsheng, ZHAO Bo, JI Feng, et al. Preliminary Insights into the Hazards Triggered by the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2024, 51(1): 1-8.
    [2]
    陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版), 2024,DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024,DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497
    [3]
    倪瑞胜, 许文斌. 震形图APP: 一种基于Android系统的地震形变模拟应用程序[J]. 地球与行星物理论评, 2023, 54(6): 622-632.

    NI Ruisheng, XU Wenbin. Codefmap APP: A Seismic Deformation Simulation Application Based on Android System[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(6): 622-632.
    [4]
    LI S W, XU W B, LI Z W. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges[J]. Geodesy and Geodynamics, 2022, 13(2): 114-126.
    [5]
    LIU H Z, XIE L, ZHAO G Q, et al. A Joint InSAR-GNSS Workflow for Correction and Selection of Interferograms to Estimate High-Resolution Interseismic Deformations[J]. Satellite Navigation, 2023, 4(1): 14.
    [6]
    杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501

    YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20230501. doi: 10.13203/j.whugis20230501
    [7]
    刘振江, 韩炳权, 能懿菡, 等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/j.whugis20240008. doi: 10.13203/j.whugis20240008

    LIU Zhenjiang, HAN Bingquan, NAI Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20240008. doi: 10.13203/j.whugis20240008
    [8]
    TAPPONNIER P, MEYER B, AVOUAC J P, et al. Active Thrusting and Folding in the Qilian Shan, and Decoupling Between Upper Crust and Mantle in Northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97(3): 382-403.
    [9]
    YIN A, HARRISON T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
    [10]
    WANG Q, ZHANG P Z, FREYMUELLER J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5542): 574-577.
    [11]
    袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2): 270-278.

    YUAN Daoyang, ZHANG Peizhen, LIU Baichi, et al. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeas-tern Margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 2004, 78(2): 270-278.
    [12]
    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.
    [13]
    ZHENG W J, ZHANG P Z, HE W G, et al. Transformation of Displacement Between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults[J]. Tectonophysics, 2013, 584: 267-280.
    [14]
    LI Y H, LIU M, WANG Q L, et al. Present-Day Crustal Deformation and Strain Transfer in Northeas-tern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 487: 179-189.
    [15]
    徐化超, 王辉, 曹建玲. 青藏高原东北缘主要断裂滑动速率及其动力学意义[J]. 地震, 2018, 38(3): 13-23.

    XU Huachao, WANG Hui, CAO Jianling. Slip Rates of the Major Faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications[J]. Earthquake, 2018, 38(3): 13-23.
    [16]
    PAN Z Y, YUN Z, SHAO Z G. Contemporary Crustal Deformation of Northeast Tibet from Geodetic Investigations and a Comparison Between the Seismic and Geodetic Moment Release Rates[J]. Physics of the Earth and Planetary Interiors, 2020, 304: 106489.
    [17]
    PAN Z Y, HE J K, SHAO Z G. Spatial Variation in the Present-Day Stress Field and Tectonic Regime of Northeast Tibet from Moment Tensor Solutions of Local Earthquake Data[J]. Geophysical Journal International, 2020, 221(1): 478-491.
    [18]
    CHEN Z D, KORONOVSKII N V, ZAITSEV V A, et al. Active Tectonic Deformation of the Qilian Shan, Northeastern Tibetan Plateau[J]. Russian Geology and Geophysics, 2024, 65(7): 779-794.
    [19]
    ZHANG P Z, SHEN Z K, WANG M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809.
    [20]
    CHEN Z D, XU W B, LIU R, et al. Tectonic Deformation of the Western Qilian Shan in Response to the North–South Crustal Shortening and Sinistral Strike-Slip of the Altyn Tagh Fault Inferred from Geomorphologic Data[J]. Frontiers in Earth Science, 2022, 10: 808935.
    [21]
    WANG E, SHI X H, WANG G, et al. Structural Control on the Topography of the Laji–Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau: Facilitation of the Headward Propagation of the Yellow River System[J]. Journal of Asian Earth Sciences, 2011, 40(4): 1002-1014.
    [22]
    袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.
    [23]
    李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.

    LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between the Ancient Earthquake of Lajishan Fault and the Catastrophic Event of Lajia Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.
    [24]
    李智敏, 田勤俭, 屠泓为. 拉脊山断裂带遥感特征研究[J]. 高原地震, 2009, 21(1): 26-31.

    LI Zhimin, TIAN Qinjian, TU Hongwei. Remote Sensing Characteristics of Lajishan Fault[J]. Plateau Earthquake Research, 2009, 21(1): 26-31.
    [25]
    王二七, 张旗, B.Burchfiel Clark. 青海拉鸡山: 一个多阶段抬升的构造窗[J]. 地质科学, 2000, 35(4): 493-500.

    WANG Erqi, ZHANG Qi, BURCHFIEL C B. The Lajishan Fault Belt in Qinghai Province: A Multi-staged Uplifting Structural Window[J]. Scientia Geologica Sinica, 2000, 35(4): 493-500.
    [26]
    张波. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2012.

    ZHANG Bo. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji ShanFault[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2012.
    [27]
    周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.

    ZHOU Lin, WANG Qingliang, LI Changjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.
    [28]
    LI X N, PIERCE I K D, BORMANN J M, et al. Tectonic Deformation of the Northeastern Tibetan Plateau and Its Surroundings Revealed with GPS Block Modeling[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB020733.
    [29]
    WALD D J, HEATON T H, HUDNUT K W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S49-S70.
    [30]
    QIAN Y Y, NI S D, WEI S J, et al. The Effects of Core-Reflected Waves on Finite Fault Inversions with Teleseismic Body Wave Data[J]. Geophysical Journal International, 2017, 211(2): 936-951.
    [31]
    LASKE G, MASTERS G, MA Z, et al. Update on CRUST1.0—A 1-Degree Global Model of Earth’s Crust[C]// EGU General Assembly, Vienna, Austria, 2013.
    [32]
    KENNETT B L N, ENGDAHL E R, BULAND R. Constraints on Seismic Velocities in the Earth from Traveltimes[J]. Geophysical Journal International, 1995, 122(1): 108-124.
    [33]
    FARR T G, ROSEN P A, CARO E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2): 2005RG000183.
    [34]
    JONSSON S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
    [35]
    ZHU L P, RIVERA L A. A Note on the Dynamic and Static Displacements from a Point Source in Multilayered Media[J]. Geophysical Journal International, 2002, 148(3): 619-627.
    [36]
    SHEN W S, RITZWOLLER M H, KANG D, et al. A Seismic Reference Model for the Crust and Uppermost Mantle Beneath China from Surface Wave Dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.
    [37]
    BAGNARDI M, HOOPER A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
    [38]
    SEKIGUCHI H. Fault Geometry at the Rupture Termination of the 1995 Hyogo-Ken Nanbu Earthquake[J]. Bulletin of the Seismological Society of America, 2000, 90(1): 117-133.
    [39]
    HARTZELL S H, HEATON T H. Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-1583.
    [40]
    OLSON A H, APSEL R J. Finite Faults and Inverse Theory with Applications to the 1979 Imperial Valley Earthquake[J]. The Bulletin of the Seismological Society of America, 1982, 72(6A): 1969-2001.
    [41]
    ZHENG A, YU X W, XU W B, et al. A Hybrid Source Mechanism of the 2017 Mw 6.5 Jiuzhaigou Earthquake Revealed by the Joint Inversion of Strong-Motion, Teleseismic and InSAR Data[J]. Tectonophysics, 2020, 789: 228538.
    [42]
    邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学:地球科学, 2002, 32(12): 1020-1030.

    DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic Characteristics of Active Structures in China[J]. Science China Earth Sciences, 2002, 32(12): 1020-1030.
    [43]
    ZHENG D W, ZHANG P Z, WAN J L, et al. Late Cenozoic Deformation Subsequence in Northeastern Margin of Tibet—Detrital AFT Records from Linxia Basin[J]. Science China Earth Sciences, 2003, 46(S2): 266-275.
    [44]
    YUAN D Y, CHAMPAGNAC J D, GE W P, et al. Late Quaternary Right-Lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(9/10): 2016-2030.
    [45]
    郭祥云, 蒋长胜, 韩立波, 等. 中国大陆及邻区震源机制数据集(2009—2021年)[EB/OL]. (2022-03-16) https://data.earthquake.cn.

    GUO Xiangyun, JIANG Changsheng, HAN Libo, et al. Focal Mechanism Data Set in Chinese Mainland and Its Adjacent Area(2009—2021)[EB/OL]. (2022-03-16) https://data.earthquake.cn.
    [46]
    邓起东, 朱艾斓, 高翔. 再议走滑断裂与地震孕育和发生条件[J]. 地震地质, 2014, 36(3): 562-573.

    DENG Qidong, ZHU Ailan, GAO Xiang. Re-Eva-luation of Seismogenic and Occurrence Conditions of Large Earthquakes on Strike-Slip Faults[J]. Seismology and Geology, 2014, 36(3): 562-573.
    [47]
    ACOCELLA V. Volcano-Tectonic Processes[M]. Berlin: Springer International Publishing, 2021.
    [48]
    WANG Y Z, WANG M, SHEN Z K. Block-Like Versus Distributed Crustal Deformation Around the Northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017, 140: 31-47.
    [49]
    WESSEL P, LUIS J F, UIEDA L, et al. The Generic Mapping Tools Version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (386) PDF downloads (160) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return