利用小波理论计算物理大地测量中的奇异积分

于锦海, 朱灼文, 郭建峰

于锦海, 朱灼文, 郭建峰. 利用小波理论计算物理大地测量中的奇异积分[J]. 武汉大学学报 ( 信息科学版), 1999, 24(1): 36-39.
引用本文: 于锦海, 朱灼文, 郭建峰. 利用小波理论计算物理大地测量中的奇异积分[J]. 武汉大学学报 ( 信息科学版), 1999, 24(1): 36-39.
Yu Jinhai, Zhu Zhuowen, GuoJianfeng. Computing the Singular Integrals in Physical Geodesy by Using Wavelet Theory[J]. Geomatics and Information Science of Wuhan University, 1999, 24(1): 36-39.
Citation: Yu Jinhai, Zhu Zhuowen, GuoJianfeng. Computing the Singular Integrals in Physical Geodesy by Using Wavelet Theory[J]. Geomatics and Information Science of Wuhan University, 1999, 24(1): 36-39.

利用小波理论计算物理大地测量中的奇异积分

基金项目: 国家测绘局测绘科技发展基金,95034
详细信息
    作者简介:

    于锦海, 男, 36岁, 教授, 博士, 现从事数学和物理大地测量学研究

  • 中图分类号: P223

Computing the Singular Integrals in Physical Geodesy by Using Wavelet Theory

  • 摘要: 利用小波理论讨论了奇异积分的计算问题,用实例说明了一维情况下计算的快速性和准确性。与Fourier变换法相比,列举了小波理论的优点,肯定了在局部重力场研究中小波理论用于实际的重要性。
    Abstract: The computations of singular integrals are an important chain for practical applications of physical geodesy. It is our purpose in this paper to investigate the problem of computing singular integrals by means of wavelet theory. The fast operation and high precision have been illustrated by a practical example for one-dimension case. As a comparison with Fourier transform, kinds of advantages of wavelet theory have been shown up. Definetly to say, wavelet theory is a great important tool for practical applications to study local gravity field.
计量
  • 文章访问数:  744
  • HTML全文浏览量:  54
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-07-22
  • 发布日期:  1999-01-04

目录

    /

    返回文章
    返回