-
摘要: 观测数据受到粗差污染时,平差结果往往失真,不可采用。选择合适的统计检验量是对测量数据进行粗差处理的关键一环,而构造统计检验量必须对尺度因子做出估计。首先对样本尺度因子的绝对中位差(median absolute deviation,MAD)估计进行了讨论,并详细探讨了其中涉及到的Fisher一致性调节因子的确定;然后在此基础上,分别提出了平差模型中基于标准化残差和一致最大功效(uniformly most powerful,UMP)统计检验量序列的尺度因子的两种抗差估计方法,尺度因子的两种抗差估计都可用于构造相应的统计检验量以识别和定位可疑观测量;最后对全球导航卫星系统(global navigation satellite systems,GNSS)网平差进行具体数值计算,结果表明,尺度因子的MAD估计具有良好的抗差性,不但可用于粗差处理,还可用于平差成果的精度评定。Abstract:Objectives The least-squares method is very sensitive to outliers, and the adjustment outputs will usually be unacceptable when some of the observations are contaminated. Selection of appropriate statistical tests plays a pivotal role both in robust estimation and conventional outlier detection procedures.Methods The MAD (median absolute deviation) estimate of scale factor in the univariate case is discussed firstly. Determination of the Fisher-consistency factor is described for Gaussian normal distribution. Robust estimates of scale factor in linear adjustment model are addressed based on standardized least-squares residuals and the uniformly most powerful test statistics, respectively. Both of them can be used for constructing statistical tests, to identify the potential outlying observations, and therefore their deterioration effect will be mitigated. For illustrative purpose, Monte Carlo simulations in GPS network adjustment scenario are performed.Results Numerical results show that the MAD-based estimate of scale factor is robust and works well in accuracy assessment for adjustment outputs.Conclusions Explicit formula for estimating the scale factor, the MAD is a very robust scale estimator and has low computation complexity. It is therefore appropriate to use the MAD for adjustment computations and accuracy assessment when outliers are present.
-
Keywords:
- scale factor /
- outlier detection /
- robust estimation /
- MAD estimate
-
-
表 1 4种方案得到的尺度因子估值序列的统计结果/mm
Table 1 Statistics of Estimated Scale Factor of Four Schemes/mm
方案 最大值 平均值 中位数 方案1 1.28 1.00 1.00 方案2 1.52 1.00 1.00 方案3 2.09 0.84 0.85 方案4 1.56 0.89 0.90 -
[1] Huber P J. Robust Statistics[M]. New York: Wiley, 1981
[2] 周江文, 黄幼才, 杨元喜, 等. 抗差最小二乘法[M]. 武汉: 华中理工大学出版社, 1997 Zhou Jiangwen, Huang Youcai, Yang Yuanxi, et al. Robust Least Squares Method[M]. Wuhan: Huazhong University of Science and Technology Press, 1997
[3] Wolf P R, Ghilani C D. Adjustment Computations: Statistics and Least Squares in Surveying and GIS [M]. New York: Wiley, 1997
[4] Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin: SpringerVerlag, 1999
[5] Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying[M]. New York: Wiley, 2015
[6] Barnett V, Lewis T. Outliers in Statistical Data [M]. New York: Wiley, 1994
[7] Baarda W. A Testing Procedure for Use in Geodetic Networks[J]. Netherlands Geodetic Commission, Publications on Geodesy, 1968, 2(5): 1-97
[8] Pope A J. The Statistics of Residuals and the Detection of Outliers[R]. Rockville: NOAA Technical Report, 1976
[9] Chatterjee S, Hadi A S. Sensitivity Analysis in Linear Regression[M]. New York: Wiley, 1988
[10] Kargoll B. On the Theory and Application of Model Misspecification Tests in Geodesy[D]. Bonn: University of Bonn, 2007
[11] 鲁铁定, 杨元喜, 周世健. 均值漂移模式几种粗差探测法的MDB比较[J]. 武汉大学学报·信息科学版, 2019, 44(2): 185-192 doi: 10.13203/j.whugis20140330 Lu Tieding, Yang Yuanxi, Zhou Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185- 192 doi: 10.13203/j.whugis20140330
[12] 王海涛, 欧吉坤, 袁运斌, 等. 估计观测值粗差三种方法的等价性讨论[J]. 武汉大学学报·信息科学版, 2013, 38(2): 162-166 http://ch.whu.edu.cn/article/id/6096 Wang Haitao, Ou Jikun, Yuan Yunbin, etal. On Equivalence of Three Estimators for Outliers in Linear Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 162- 166 http://ch.whu.edu.cn/article/id/6096
[13] Hampel F R. The Influence Curve and its Role in Robust Estimation[J]. Journal of the American Statistical Association, 1974, 69(346): 383-393 doi: 10.1080/01621459.1974.10482962
[14] Rousseeuw P J, Croux C. Alternatives to the Median Absolute Deviation[J]. Journal of the American Statistical Association, 1993, 88(424): 1 273-1 283 doi: 10.1080/01621459.1993.10476408
[15] 郭建锋. 模型误差理论若干问题研究及其在GPS数据处理中的应用[D]. 武汉: 中科院测量与地球物理研究所, 2007 Guo J. Theory of Model Errors and its Applications in GPS Data Processing[D]. Wuhan: Institute of Geodesy and Geophysics of Chinese Academy of Sciences, 2007
[16] Guo J, Ou J, Wang H. Robust Estimation for Correlated Observations: Two Local Sensitivity-based Downweighting Strategies[J]. Journal of Geodesy, 2010, 84(4): 243-250 doi: 10.1007/s00190-009-0361-y
[17] Guo J. A Note on The Conventional Outlier Detection Test Procedures[J]. Boletim Ciencias Geodesicas, 2015, 21(2): 433-440 doi: 10.1590/S1982-21702015000200024
[18] Snow K B, Schaffrin B. Three- Dimensional Outlier Detection for GPS Networks and Their Densification via the BLIMPBE Approach[J]. GPS Solutions, 2003, 7(2): 130-139 doi: 10.1007/s10291-003-0058-2
[19] Yang Y, Song L, Xu T. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002, 76(6): 353-358 doi: 10.1007%2Fs00190-002-0256-7.pdf
-
期刊类型引用(4)
1. 刘晓云,郭春喜,靳鑫洋,蒋涛. 2020年珠峰高程测量与确定流程解析. 大地测量与地球动力学. 2024(02): 111-115+127 . 百度学术
2. 张建华,张庆涛,张涛,郑文科,陈小英. 顾及水准起算重力异常差异的珠峰地区垂直形变分析. 测绘科学. 2023(06): 1-8 . 百度学术
3. 郭春喜,靳鑫洋,蒋涛,王斌,刘晓云. 2020与2005珠峰测量与高程确定异同. 测绘科学. 2023(07): 10-15 . 百度学术
4. 党亚民,蒋涛,杨元喜,孙和平,姜卫平,朱建军,薛树强,张小红,蔚保国,罗志才,李星星,肖云,章传银,张宝成,李子申,冯伟,任夏,王虎. 中国大地测量研究进展(2019—2023). 测绘学报. 2023(09): 1419-1436 . 百度学术
其他类型引用(0)