一种基于流形学习的空间数据划分方法

付仲良, 赵星源, 王楠, 杨元维, 田宗舜, 俞志强

付仲良, 赵星源, 王楠, 杨元维, 田宗舜, 俞志强. 一种基于流形学习的空间数据划分方法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1294-1298,1323. DOI: 10.13203/j.whugis20141008
引用本文: 付仲良, 赵星源, 王楠, 杨元维, 田宗舜, 俞志强. 一种基于流形学习的空间数据划分方法[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1294-1298,1323. DOI: 10.13203/j.whugis20141008
FU Zhongliang, ZHAO Xingyuan, WANG Nan, YANG Yuanwei, TIAN Zongshun, YU Zhiqiang. Spatial Data Partitioning Method Based on Manifold Learning[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1294-1298,1323. DOI: 10.13203/j.whugis20141008
Citation: FU Zhongliang, ZHAO Xingyuan, WANG Nan, YANG Yuanwei, TIAN Zongshun, YU Zhiqiang. Spatial Data Partitioning Method Based on Manifold Learning[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1294-1298,1323. DOI: 10.13203/j.whugis20141008

一种基于流形学习的空间数据划分方法

基金项目: 国家自然科学基金资助项目(41501391)。
详细信息
    作者简介:

    付仲良,教授,博士生导师,主要从事地理信息科学研究。E-mail:fuzhl@263.net

    通讯作者:

    赵星源,博士生。E-mail:xyz880330@whu.edu.cn

  • 中图分类号: P208

Spatial Data Partitioning Method Based on Manifold Learning

Funds: The National Natural Science Foundation of China, No.41501391.
  • 摘要: 空间数据划分是空间数据库系统进行高效空间连接操作的前提和基础。针对现有的空间数据划分方法难以保持低冗余度和高数据量均衡度以及高效支持空间连接的问题,提出了一种基于流形学习的空间数据划分算法。利用流形学习保留降维前源数据结构不变的特点,构建数据划分策略和映射方法,通过将邻近数据划分到同一数据块来减少数据冗余度,通过对最小数据块进行映射,提高整体的数据量均衡度。实验表明,本文提出的划分方法具有极低的数据冗余度和良好的数据量均衡度。
    Abstract: Spatial data partitioning is a prerequisite for high efficient spatial joins within spatial database systems. Low data redundancy and high data balance rates are difficult to maintain however, using existing spatial data partitioning methods. We propose a spatial data partitioning algorithm based on manifold learning. Manifold learning can retain the structures of source data to construct a data partitioning strategy and mapping method before dimensionality reduction. Assigning neighboring objects to the same data block reduces data redundancy while mapping objects to the smallest data block adds data balance. Experiments show that spatial data partitioning based on manifold learning can reduce the data redundancy rate to very low level with good data balance.
  • [1] Zhou X, Abel D J,Truffet D. Data Partitioning for Parallel Satial Join Pocessing[J]. Geoinformatica, 1998, 2(2): 175-204
    [2] Patel J M, De Witt D J. Partition Based Spatial-merge Join[C].ACM SIGMOD Int Conf on Management of Data,New York, USA,1996
    [3] Zhang S, Han J, Liu Z, et al.SJMR: Parallelizing Spatial Join with Mapreduce on Clusters[C]//IEEE International Conference on Cluster Computing and Workshops. New Orleans, LA: IEEE Press, 2009: 1-8
    [4] Wang Yongjie, Meng Lingkui, Zhao Chunyu. Spatial Partitioning of Massive Data Based on Hilbert Spatial Ordering Code[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 650-653(王永杰, 孟令奎, 赵春宇. 基于 Hilbert 空间排列码的海量空间数据划分算法研究[J]. 武汉大学学报·信息科学版, 2007, 32(7): 650-653)
    [5] Abugov D. Oracle Spatial Partitioning: Best Practices (an Oracle White Paper)[R]. Oracle Inc, Redwood Shores, CA, 2004
    [6] Guo D. Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (REDCAP)[J]. International Journal of Geographical Information Science, 2008, 22(7): 801-823
    [7] Cheng Changxiu. A Multi-scale Spatial Index Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 597-601(程昌秀. 矢量数据多尺度空间索引方法的研究 [J]. 武汉大学学报·信息科学版, 2009, 34(5): 597-601)
    [8] Borg I,Groenen P J F. Modern Multidimensional Scaling: Theory and Applications[M]. New York:Springer, 2005
    [9] Sun Weiwei, Liu Chun, Shi Beiqi, et al. Low-dimension Manifold Feature Extraction of Hyperspectral Imagery Using Dimension Reduction with ISOMAP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 642-647(孙伟伟, 刘春, 施蓓琦, 等. 等距映射降维用于高光谱影像低维流形特征提取[J]. 武汉大学学报·信息科学版, 2013, 38(6): 642-647)
    [10] Xiong Wei, Zhang Lefei, Du Bo. A Multilinear Discriminant Subspace Projection with Orthogonalization for Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 583-587(熊维, 张乐飞, 杜博. 一种基于多维正交判别子空间投影的人脸识别方法[J]. 武汉大学学报·信息科学版, 2015, 40(5): 583-587)
    [11] Du Peijun, Wang Xiaomei, Tan Kun, et al. Dimensionality Reduction and Feature Extraction from Hyperspectral Remote Sensing Imagery Based on Manifold Learning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 148-152 (杜培军, 王小美, 谭琨, 等. 利用流形学习进行高光谱遥感影像的降维与特征提取[J]. 武汉大学学报·信息科学版,2011, 36(2): 148-152)
    [12] De Witt D J, Naughton J F, Schneider D A, et al. Practical Skew Handling in Parallel Joins[C]. The 18th VLDB Conference, Vancouver,British Columbia,Canada,1992
  • 期刊类型引用(2)

    1. 夏慧琼, 林丽群. 拉普拉斯特征映射的时空数据划分方法. 测绘科学. 2018(06): 32-38 . 百度学术
    2. 季姝, 俞静. 基于冗余数据压缩算法的经济信用风险研究. 电子设计工程. 2017(07): 15-18+23 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1018
  • HTML全文浏览量:  60
  • PDF下载量:  724
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-12-29
  • 发布日期:  2015-10-04

目录

    /

    返回文章
    返回