一种路网拓扑约束下的增量型地图匹配算法

朱递, 刘瑜

朱递, 刘瑜. 一种路网拓扑约束下的增量型地图匹配算法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(1): 77-83. DOI: 10.13203/j.whugis20150016
引用本文: 朱递, 刘瑜. 一种路网拓扑约束下的增量型地图匹配算法[J]. 武汉大学学报 ( 信息科学版), 2017, 42(1): 77-83. DOI: 10.13203/j.whugis20150016
ZHU Di, LIU Yu. An Incremental Map-Matching Method Based on Road Network Topology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 77-83. DOI: 10.13203/j.whugis20150016
Citation: ZHU Di, LIU Yu. An Incremental Map-Matching Method Based on Road Network Topology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 77-83. DOI: 10.13203/j.whugis20150016

一种路网拓扑约束下的增量型地图匹配算法

基金项目: 

国家自然科学基金 41271386

国家自然科学基金 41428102

详细信息
    作者简介:

    朱递, 硕士生, 主要从事地理信息系统、时空大数据和计算机可视化研究。zhudi-001@163.com

  • 中图分类号: P208;P283.1

An Incremental Map-Matching Method Based on Road Network Topology

Funds: 

The National Natural Science Foundation of China 41271386

The National Natural Science Foundation of China 41428102

  • 摘要: 着眼于低频浮动车轨迹数据,对地图匹配问题进行了抽象,并分析了影响匹配结果的几何约束与拓扑约束。针对GPS采样的低频性和城市路网的复杂性,提出了一种路网拓扑约束下的增量型地图匹配算法(topology-constrained incremental matching algorithm,TIM)。选取北京市浮动车的GPS样例轨迹数据进行匹配,结果表明,该匹配算法在不同复杂程度的城市路网下均表现较好。
    Abstract: The emergence of big spatio-temporal data brings brand new perspectives as well as challenges for us to investigate and understand urban space. Due to existence of GPS position error, it is inevitable to adopt the map-matching methods to map the spatio-temporal trajectories onto geographic space. This research focuses on the low-sampling trajectories of floating cars in urban road networks by formalizing the map-matching process and exploring the influence of both the geometric and topology constraints on matching results. To solve the problem of matching low-sampling GPS data in the context of complex urban road networks, this paper proposes a topology-constrained incremental matching algorithm (TIM). Utilizing a sample GPS trajectory of Beijing float car as an example, the TIM algorithm is verified to be efficient and accurate give various road network complexity. Our study is valuable for the pre-processing of massive spatio-temporal data, and has the potential to benefit trajectory data mining and related urban informatics research in the future.
  • 图  1   地图匹配问题抽象化图示

    Figure  1.   Abstraction of Map-Matching

    图  2   TIM算法流程图

    Figure  2.   Flowchart of TIM Algorithm

    图  3   路网拓扑邻接字典构建示意图

    Figure  3.   Diagram of Topological Adjacency Dictionary

    图  4   GPS误差缓冲区动态生成效果图

    Figure  4.   Dynamically Building GPS Error Buffer

    图  5   GPS数据候选匹配边集EPi的建立

    Figure  5.   Generation of EPi

    图  6   北京市城区路网示意图

    Figure  6.   Road Network of Beijing Urban Area

    图  7   样例轨迹点密度图

    Figure  7.   Dot Density Map of Sample Trajectory

    图  8   07:00~07:59机场高速路段匹配结果

    Figure  8.   Match Results for Airport Expressway at 07:00-07:59

    图  9   09:58~11:08北二环胡同

    Figure  9.   Match Results for Beierhuan Alleyway at 09:58-11:08

    图  10   13:33~13:46南二环护城河段

    Figure  10.   Match Results for Nanerhuan Moat at 13:33-13:46

    图  11   15:59~16:08玉渊潭南侧(拓扑异常)

    Figure  11.   Error Match at the South of Yuyuantan at 15:59-16:08

    图  12   候选匹配边集大小与匹配效率的关系

    Figure  12.   Influence of EPi Set on Matching Efficiency

  • [1]

    Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic "Source-Sink Areas":Evidence from GPS-Enabled Taxi Data in Shanghai[J]. Landscape and Urban Planning, 2012, 106(1):73-87 doi: 10.1016/j.landurbplan.2012.02.012

    [2]

    Liu X, Gong L, Gong Y, et al. Revealing Travel Patterns and City Structure with Taxi Trip Data[J]. Journal of Transport Geography, 2015, 43(1):78-90 https://www.researchgate.net/profile/Li_Gong15/publication/258083924_Revealing_travel_patterns_and_city_structure_with_taxi_trip_data/links/560322c308ae4accfbb88f56.pdf

    [3]

    Zhou Y, Fang Z, Thill J C, et al. Functionally Critical Locations in an Urban Transportation Network:Identification and Space-Time Analysis Using Taxi Trajectories[J]. Computers, Environment and Urban Systems, 2015, 52(1):34-47 http://www.docin.com/p-1146822162.html

    [4]

    Quddus M A, Ochieng W Y, Zhao L, et al. A General Map-Matching Algorithm for Transport Telematics Applications[J]. GPS Solutions, 2003, 7(3):157-167 doi: 10.1007/s10291-003-0069-z

    [5]

    Greenfeld J S. Matching GPS Observations to Locations on a Digital Map[C]. The 81th Annual Meeting of the Transportation Research Board, Washington D C, 2002

    [6]

    Quddus M A, Noland R B, Ochieng W Y. Current Map-Matching Algorithms for Transport Applications:State of the Art and Future Research Directions[J]. Transportation Research Part C, 2007, 8(15):312-328 http://www.citeulike.org/user/aileenfp/article/2404696

    [7]

    White C E, Bernstein D, Kornhauser A L. Some Map-Matching Algorithms for Personal Navigation Assistants[J]. Transportation Research Part C, 2000, 8(1):91-108 https://www.researchgate.net/profile/Alain_Kornhauser/publication/222694469_Some_Map_Matching_Algorithms_for_Personal_Navigation_Assistants/links/0046352784f0c57b26000000.pdf

    [8] 李清泉, 胡波, 乐阳.一种基于约束的最短路径低频浮动车数据地图匹配算法[J].武汉大学学报·信息科学版, 2013, 38(7):805-808 http://ch.whu.edu.cn/CN/abstract/abstract2697.shtml

    Li Qingquan, Hu Bo, Yue Yang. Flowing Car Data Map-Matching Based on Constrained Shortest Path Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):805-808 http://ch.whu.edu.cn/CN/abstract/abstract2697.shtml

图(12)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-17
  • 发布日期:  2017-01-04

目录

    /

    返回文章
    返回