ZHONG Zhen, LI Fei, YAN Jianguo, SHAO Xianyuan. Comparison and Analysis on Main and Newly Lunar Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 390-393.
Citation: ZHONG Zhen, LI Fei, YAN Jianguo, SHAO Xianyuan. Comparison and Analysis on Main and Newly Lunar Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 390-393.

Comparison and Analysis on Main and Newly Lunar Gravity Field Models

More Information
  • Received Date: March 10, 2013
  • Revised Date: April 04, 2013
  • Published Date: April 04, 2013
  • The power spectrum and the free air gravity anomaly of different gravity field models CEGM02, SGM100h, SGM150, LP150Q, GLGM\|3, LPE200 were analyzed. The orbits of the lunar exploration spacecrafts with different altitudes and inclinations were simulated for all the gravity fields. Results firstly show that all the models behave the same way for polar orbit satellites, which reveal that all the models can be recommended in precision orbit determination for the polar orbit satellites. But CEGM02, SGM100h and SGM150 contribute more to those non-polar orbit spacecrafts. It is accordingly suggested that those non-polar orbit spacecrafts could be launched for future lunar exploration so as to perfect the lunar gravity field model. Moreover, the lunar gravity field model will be refined by using localized spherical harmonic functions which can efficiently extract local gravity field signals.
  • [1]
    Konopliv A S, Asmar S W, Carranza E, et al. Recent Gravity Models as a Result of the Lunar Prospector Mission[J]. Icarus, 2001, 15(1):1-18
    [2]
    Konopliv A S. The Lunar Prospector Garvity Science Team, LP150Q Spherical Harmonic Model
    [EB/QL]. http://pds-geosciences.wustl.edu/lunar01/lp-l-rss-5-gravity-v1/lp_1001/sha/jg1150q1.sha,2000
    [3]
    Mazarico E, Lemoine F G. GLGM-3: a Degree-150 Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters[J]. J Geophysics Res, 2010, 115(1):1-14
    [4]
    Han S C, Mazarico E, Rowlands D, et al. New Analysis of Lunar Prospector Radio Tracking Data Brings the Nearside Gravity Field of the Moon with an Unprecedented Resolution[J]. Icarus, 2011,215(2):455-459
    [5]
    李斐,鄢建国. 月球重力场的确定及构建我国自主月球重力场模型的方案研究[J]. 武汉大学学报.信息科学版, 2007, 32(1):6-10
    [6]
    李斐,鄢建国,平劲松,等. 基于大倾角卫星轨道数据的月球重力场模型仿真解算[J]. 地球物理学报, 2011, 54(3):666-672
    [7]
    王威,鄢建国,史弦,等. 绕月飞行器近圆形轨道演化的数值分析[J]. 武汉大学学报.信息科学版, 2007, 32(1):19-23
    [8]
    Yang J G, Ping J S, Hunag Q, et al. Change′E-1 Precision Orbit Determination and Lunar Gravity Field Solution
    [C]. The 15th APCC, Shanghai, 2009
    [9]
    鄢建国, 李斐,平劲松, 等. 基于“嫦娥一号”跟踪数据的月球重力场模型CEGM-01[J].地球物理学报, 2010, 53(12):2 843-2 851
    [10]
    鄢建国, 平劲松, Matsumoto K, 等. 嫦娥一号绕月卫星对月球重力场模型的优化[J]. 中国科学:物理学 力学 天文学, 2011, 41(7):870-878
    [11]
    Yan J G, Goossens S, Matsumoto K, et al. CEGM02: an Improved Lunar Gravity Model Using Chang′E-1 Orbital Tracking Data[J]. Planetary and Space Science, 2011, 11(10):76-82
    [12]
    Matsumoto K, Goossens S, Ishihara Y, et al. An Improved Lunar Gravity Field Model from SELENE and Historical Traking Data: Revealing the Farside Gravity Features[J]. J Geophysics Res, 2010, 115(7):1-22
    [13]
    Heiskanen W A, Moritz H. Physical Geodesy
    [M]. San Francisco: Freeman, 1967
    [14]
    Rowlands D D, Marshall J A, Mccarthy J, et al. GEODYN II System Description.Vols.1-5
    [R]. Hughes STX Corp., Greenbelt, MD, 2000
  • Related Articles

    [1]DU Yuling, YAN Shiyong, ZHANG Haolei, ZHAO Feng, QIU Chunping. Research and Application of DS‑InSAR Phase Optimization Based on Regional Growth[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 216-224. DOI: 10.13203/j.whugis20210365
    [2]WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052
    [3]LUO Haibin, HE Xiufeng. InSAR Phase Unwrapping Algorithms with the Aid of GPS Control Points[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 630-636. DOI: 10.13203/j.whugis20140956
    [4]YU Xiaoxin, YANG Honglei, PENG Junhuan. A Modified Goldstein Algorithm for InSAR Interferogram Filtering[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1051-1054.
    [5]ZHANG Hongmin, JIN Guowang, XU Qing, QIN Zhiyuan. Phase Unwrapping Algorithm with Difference Filtering for Multi-baseline InSAR[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1030-1034.
    [6]ZHANG Sen, TANG Jinsong, YANG Hailiang, CHEN Ming. Interferometric Phase Fusion and DEM Reconstruction Method with CSSM for Multi-frequency InSAR Systems[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 328-333.
    [7]LI Yunjin, ZHONG Ershun, HUANG Yuefeng. An Improved and Approximate Interpolation by Skew Axial Parabola[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1490-1494.
    [8]LI Houpu, BIAN Shaofeng. Derivation of Inverse Expansions for Auxiliary Latitudes by Hermite Interpolation Method[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 623-626.
    [9]XU Caijun, WANG Hua. Comparison of InSAR Phase Unwrapping Algorithms and Error Analysis[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 67-71.
    [10]REN Kun, Veronique Prinet, SHI Xiangquan. Sponebace InSAR Flat Earth Removal Processing Based on Geolocation Method[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3): 326-329.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return