WU Jia, CAI Zhihua, JIN Xiaowen. Self-Adapting Differential Evolution and Its Application on Remote Sensing Image Supervised Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 23-26.
Citation: WU Jia, CAI Zhihua, JIN Xiaowen. Self-Adapting Differential Evolution and Its Application on Remote Sensing Image Supervised Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 23-26.

Self-Adapting Differential Evolution and Its Application on Remote Sensing Image Supervised Classification

More Information
  • Received Date: November 07, 2012
  • Published Date: January 04, 2013
  • A new classification algorithm is proposed for remote sensing imagery based on the self-adapting differential evolution to be waged against the three main disadvantages of traditional classification algorithm for remote sensing image:multiple constraints,easy to fall into local optimal solution,lower classification accuracy.In the new method for supervised classification of multi/hyper-spectral remote sensing image,the globally optimal cluster centers are firstly learned by using the self-adapting differential evolution algorithm,and then the whole remote sensing image can be classified by the cluster centers.The proposed algorithm for classification of remote sensing image is based on the standard differential evolution.The experimental results show that the self-adapting differential evolution clustering algorithm has higher classification accuracy than the traditional classification algorithm of remote sensing image.The classification accuracy and the kappa coefficient can reach 92.66% and 0.901 7,which has some practical application value.
  • Related Articles

    [1]LONG Yujie, LI Weile, HUANG Runqiu, XU Qiang, YU Bin, LIU Gang. Automatic Extraction and Evolution Trend Analysis of Landslides in Mianyuan River Basin in the 10 Years After Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792-1800. DOI: 10.13203/j.whugis20200180
    [2]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [3]XIONG Biao, JIANG Wanshou, LI Lelin. Gauss Mixture Model Based Semi-Supervised Classification for Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 108-112.
    [4]TAO Jianbin, SHU Ning, GONG Yan, SHEN Zhaoqing. An Instructed Unsupervised Classification Method for Remote Sensing Image Based on Gaussian Mixture Model[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 727-732.
    [5]SHEN Zhaoqing, SHU Ning, TAO Jianbin. An Algorithm of Weighted “1 V m” SVM Multi-classification for Hyperspectral Remote Sensing Image with NPA[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1444-1447.
    [6]ZOU Tongyuan, YANG Wen, DAI Dengxin, SUN Hong. An Unsupervised Classification Method of POLSAR Image[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 910-913.
    [7]YIN Shuling, SHU Ning, LIU Xinhua. Classification of Remote Sensing Image Based on Adaptive GA and Improved BP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 201-204.
    [8]CHEN Ziyi, KANG Lishan. Multi-Parent Crossover Evolutionary Algorithm for Constrained Optimization[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 440-443.
    [9]CHENMi, YIYaohua, LIDeren, QINQianqing. Application of Projection Pursuit Based on Dynamical Evolutionary Algorithm to Anomaly Target Detection in Hyperspectral Images[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 55-58.
    [10]Zheng Zhaobao, Zheng Hong. The Image Texture Classification Based on Genetic Algorithms[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 337-339.

Catalog

    Article views (820) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return