LI Ersen, XU Bo, LI Na, ZHOU Xiaoming. Minimum Volume Constrained Linear Spectral Unmixing Algorithm[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 683-686.
Citation: LI Ersen, XU Bo, LI Na, ZHOU Xiaoming. Minimum Volume Constrained Linear Spectral Unmixing Algorithm[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 683-686.

Minimum Volume Constrained Linear Spectral Unmixing Algorithm

More Information
  • Received Date: April 10, 2011
  • Published Date: June 04, 2011
  • The mixels in the hypersepectral images directly influence the accuracy of target recognition.A large number of spectral unmixing methods are all based on the convex simplex geometry and the hypothesis of the pure pixels' existence.Actually,this hypothesis is very hard to be met in practice.We present the minimum volume constrained linear spectral unmixing algorithm,which isn't based on the presence of the pure pixels,and calculates the endmember matrix with the quadratic programming method in the reduced dimensional space.Then we estimate the abundance and extract the endmembers with least square method.Experimental results demonstrate that the proposed scheme for decomposition of mixels overall outperforms the MVC-NMF algorithm in the mass.
  • Related Articles

    [1]XU Tianyang, ZHANG Zhetao, HE Xiufeng, YUAN Haijun. A Multi-cycle Slip Detection and Repair Method for Single-Frequency GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 465-472. DOI: 10.13203/j.whugis20210009
    [2]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [3]LI Leilei, YANG Sheng, LIU Jingbin, SUN Hongxing, DING Xuewen, WU Yu, REN Chunhua, PENG Liang, XIE Changcheng. An INS-Aided Cycle Slip Detection and Repair Method Based on IF and WL Combinations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2183-2190. DOI: 10.13203/j.whugis20180185
    [4]SU Mingkun, ZHENG Jiansheng, CHEN Liwen, FANG Weidong. Cycle Slip Detection and Repair SET Method Using GPS Dual-frequency Un-differenced Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 207-212. DOI: 10.13203/j.whugis20150116
    [5]ZOU Xuan, LI Zongnan, CHEN Liang, SONG Weiwei, WANG Cheng, TANG Weiming. A New Cycle Slip Detection and Repair Method Based on Epoch Difference for a Single-frequency GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1406-1410. DOI: 10.13203/j.whugis20150805
    [6]CAI Chenglin, WANG Liangliang, LIU Changsheng, LI Gang, QIN Yi, DENG Honggao. The Cycle-Slip Detection and Repair of BDS Based on Improved TurboEdit Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1632-1637. DOI: 10.13203/j.whugis20140602
    [7]FAN Lihong, WANG Li, ZHANG Ming, ZHENG Zengji. A Combination of MW and Second-order Time-difference PhaseIonospheric Residual for Cycle Slip Detection and Repair[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 790-794. DOI: 10.13203/j.whugis20130521
    [8]CAO Xinyun, WANG Jian. Cycle-slip Detection and Repair Using GPS Triple-frequencyUn-differenced Observations[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 450-456. DOI: 10.13203/j.whugis20120184
    [9]YI Zhonghai, ZHU Jianjun, CHEN Yongqi, DAI Wujiao. Cycle-Slip Detection and Correction Algorithm for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1314-1319.
    [10]HAN Baomin, OU Jikun, CHAI Yanju. Detecting and Repairing the Gross Errors and Cycle Slips by QUAD Method[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 246-250.

Catalog

    Article views (1152) PDF downloads (897) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return