ZHANG Qian HUANG Xin, ZHANG Liangpei, . Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 117-121.
Citation: ZHANG Qian HUANG Xin, ZHANG Liangpei, . Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 117-121.

Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery

Funds: 国家973计划资助项目(2009CB723905);国家863计划资助项目(2009AA12Z114),国家自然科学基金资助项目(40930532,40771139,40901213),武汉大学博士研究生自主科研基金资助项目(2008619020100061)
More Information
  • Received Date: October 19, 2010
  • Published Date: January 04, 2011
  • This paper presents a new method of supervised extraction and classification of homogenous object(ECHO),aiming to enhancement the multiscale homogeneity in a local neighborhood of high resolution remotely sensed imagery.This method fused multiscale spectral and spatial information using a series of homogeneous regions such as 2×2,4×4 and 8×8 window sizes.Experiment proved that the proposed method outperforms the pixelwise MLC and the single scale ECHO method,with Washington DC data set obtained by HYDICE sensor and Beijing data set obtained by QuickBird.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]ZHANG Fan, LIU Changjian, FENG Xu, LI Lingyang, WANG Fangchao. A Triple-Frequency Cycle Slip Real-Time Processing Method for BDS Based on Extented Ridge Estimation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 62-71. DOI: 10.13203/j.whugis20180321
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]FAN Lihong, WANG Li, ZHANG Ming, ZHENG Zengji. A Combination of MW and Second-order Time-difference PhaseIonospheric Residual for Cycle Slip Detection and Repair[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 790-794. DOI: 10.13203/j.whugis20130521
    [5]WANG Cheng, WANG Jiexian, HE Lina. Real Time Cycle Slip Detection Based on Jarque-Bera Test Using Bi-differences of Code and Phase[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 693-696.
    [6]YI Zhonghai, ZHU Jianjun, CHEN Yongqi, DAI Wujiao. Cycle-Slip Detection and Correction Algorithm for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1314-1319.
    [7]CAI Hua, ZHAO Qile, SUN Hanrong, HU Zhigang. GNSS Real-time Data Quality Control[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 820-824.
    [8]FANG Rongxin, SHI Chuang, WEI Na, ZHAO Qile. Real-time Cycle-slip Detection for Quality Control of GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1094-1097.
    [9]WANG Guiwen, WANG Zemin, YIN Haitao. An Cycle-Slip Correction Method for Real-Time Kinematic GPS Data Based on Triple Differences Observation[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 711-714.
    [10]CAI Changsheng, GAO Jingxiang. Cycle-slip Detection and Correction of GPS Data by Wavelet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 39-42.

Catalog

    Article views (1228) PDF downloads (607) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return