WANG Jianqiang, LI Jiancheng, WANG Zhengtao, ZHAO Guoqiang. Pole Transform of Spherical Harmonic Function to Quickly Calculate Gravity the Disturbance on Earth-Orbiting Satellites[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1344-1348.
Citation: WANG Jianqiang, LI Jiancheng, WANG Zhengtao, ZHAO Guoqiang. Pole Transform of Spherical Harmonic Function to Quickly Calculate Gravity the Disturbance on Earth-Orbiting Satellites[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1344-1348.

Pole Transform of Spherical Harmonic Function to Quickly Calculate Gravity the Disturbance on Earth-Orbiting Satellites

Funds: 国家自然科学基金资助项目(41074014,41161069,41204003);江西省教育厅青年基金资助项目(GJJ12394);东华理工大学博士科研启动基金资助项目(DHBK201113,DHBK201114);武汉大学地球空间环境与大地测量教育部重点实验室开放研究基金资助项目(11-01-01)
More Information
  • Received Date: July 21, 2013
  • Revised Date: July 21, 2013
  • Published Date: November 04, 2013
  • The spherical harmonics transform is a method to improve the calculation speed of the earth’s gravity disturbsance on orbiting satellites.Based on the particularity of the trajectory for pole transformation,the Clenshaw sun method is introduced to calculate the gravity disturbance on the new coordinates.Then,a comparative analysis focuses on the calculation speed and physical space needs using three methods;the traditional,pole transform,and improved pole transform methods.A simulation using the three methods is used to calculate the gravity disturbance on one period of the orbit.Test results show that the improved pole transformation of spherical harmonic functions is 100 times the calculation speed of the traditional pole transformation method.Furthermore,the data storage capacity required by the new method is only three percent of the traditional method.
  • [1]
    管泽霖鄂栋臣,. 按克林索求和计算大地水准面差距垂线偏差及重力异常[J]. 武汉测绘科技大学学报. 1986(04)[2] 王建强李建成,赵国强,朱广彬,. 利用Clenshaw求和计算大地水准面差距[J]. 武汉大学学报(信息科学版). 2010(03)
  • Related Articles

    [1]JIANG Zhenxiang, CHEN Hui, CHEN Luwan. A Multi‑model Early Warning Method for Dam Displacement Behavior[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 280-290. DOI: 10.13203/j.whugis20210321
    [2]LI Guangchun, DAI Wujiao, YANG Guoxiang, LIU Bin. Application of Space-Time Auto-Regressive Model in Dam Deformation Analysis[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 877-893. DOI: 10.13203/j.whugis20130549
    [3]Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142.
    [4]ZHAO Qing, HUANG Shengxiang. A Way for Overall Analysis on Dam's Displacement[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1419-1422.
    [5]WANG Xinzhou, FAN Qian, XU Chengquan, LI Zhao. Dam Deformation Prediction Based on Wavelet Transform and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 469-471.
    [6]WANG Xinzhou DENG Xingsheng, . Fuzzy Neural Network Modeling for Dam Deformation Prediction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 588-591.
    [7]ZHANG Chaoyu. Multi-dimensional AR Series Modeled by Least Square Criterion[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 377-381.
    [8]Deng Yuejin, Dong Zhaowei, Zhang Zhenglu. A Cusp Catastrophe Model of Large Dam Deformation Destabilization[J]. Geomatics and Information Science of Wuhan University, 1999, 24(2): 170-173.
    [9]Lan Yueming, Wang Xinzhou. Research of Grey Forecast on Dam Level Displacement[J]. Geomatics and Information Science of Wuhan University, 1996, 21(4): 350-354.
    [10]Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return